Skip to main content
Log in

Impact of ultrasonic power on liquid fraction, microstructure and physical characteristics of A356 alloy molded through cooling slope

超声功率对冷却斜槽模压A356 合金液相分数、微观组织及物理特性的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study involves A356 alloy molded through ultrasonically vibrated cooling slope. The slope alongside ultrasonic power enables indispensable shear for engendering slurry from which the semisolid cast/heat treated billets got produced. An examination demonstrates ultrasonically vibrated cooling slope influencing the liquid fraction/microstructure/physical characteristics of stated billets. The investigation encompasses five diverse ultrasonic powers (0, 75, 150, 200, 250 W). The ultrasonic power of 150 W delivers finest/rounded microstructure with enhanced physical characteristics. Microstructural modifications reason physical transformations because of grain refinement and grain-boundary/Hall-Petch strengthening. A smaller grain size reasons a higher strength/shape factor and an increased homogeneity reasons a higher ductility. Microstructural characteristics get improved by reheating. It is owing to coalescence throughout temperature homogenization. The physical characteristics is improved by reheating because of a reduced porosity and enhanced dissolution besides augmented homogeneity. A direct comparison remains impossible owing to unavailability of researches on ultrasonically vibrated cooling slope.

摘要

本文采用超声振动冷却斜槽对A356 合金进行成型. 超声振动冷却斜槽能剪切产生半固态铸造/热处理坯料的浆料, 研究了5 种不同的超声功率(0、75、150、200、250 W)下坯料的液相分数、显微组织、物理特性. 当超声功率为150 W 时, 合金的微观组织更精细、圆整, 物理特性更强. 由于晶粒细化和晶界/Hall-Petch 强化导致微观结构改变, 从而导致物理性能改变. 晶粒尺寸越小, 强度/形状因子越高; 晶粒均匀性越高, 塑性越好. 由于温度均匀化的合并作用, 再加热改善了合金的微观组织; 随着孔隙度的降低和溶解的增强以及均匀性的增强, 在再加热过程中材料的物理性能得到改善.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FORM G W, WALLACE J F. Typical microstructure of cast metals [J]. Transactions of American Foundry Society, 1960, 68: 145–156.

    Google Scholar 

  2. CAMPBELL J. Solidification technology in the foundry and casthouse [J]. The Metals Society, 1981, 273: 61–64.

    Google Scholar 

  3. CAMPBELL J. Effects of vibration during solidification [J]. International Metals Reviews, 1981, 26(1): 71–108. DOI: https://doi.org/10.1179/imtr.1981.26.1.71.

    Article  MathSciNet  Google Scholar 

  4. GAO De-ming, LI Zhi-jun, HAN Qing-you, et al. Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy [J]. Materials Science and Engineering A, 2009, 502(1, 2): 2–5. DOI: https://doi.org/10.1016/j.msea.2008.12.005.

    Article  Google Scholar 

  5. ZHANG Zhi-qiang, LE Qi-chi, CUI Jian-zhong. Effect of high-intensity ultrasonic field on process of semi-continuous casting for AZ80 magnesium alloy billets [J]. Transactions of Nonferrous Metals Society of China, 2010, 20: s376–s381. DOI: https://doi.org/10.1016/S1003-6326(10)60501-8.

    Article  Google Scholar 

  6. YAO Lei, HAO Hai, JI Shou-hua, et al. Effects of ultrasonic vibration on solidification structure and properties of Mg-8Li-3Al alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(6): 1241–1246. DOI: https://doi.org/10.1016/S1003-6326(11)60848-0.

    Article  Google Scholar 

  7. ZHANG Liang, WU Guo-hua, WANG Shao-hua, et al. Effect of cooling condition on microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(10): 2357–2363. DOI: https://doi.org/10.1016/S1003-6326(11)61471-4.

    Article  Google Scholar 

  8. LÜ S, WU Shu-sen, DAI Wei, et al. The indirect ultrasonic vibration process for rheo-squeeze casting of A356 aluminum alloy [J]. Journal of Materials Processing Technology, 2012, 212(6): 1281–1287. DOI: https://doi.org/10.1016/j.jmatprotec.2012.01.018.

    Article  Google Scholar 

  9. GUAN Ren-guo, ZHAO Zhan-yong, WANG Xiang, et al. Process parameter optimizing and studies on microstructure and properties of AZ31 alloy prepared by semisolid rolling process [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(3): 293–298. DOI: https://doi.org/10.1007/s40195-012-0190-5.

    Article  Google Scholar 

  10. ZHAO Zhan-yong, GUAN Ren-guo, WANG Xiang, et al. Microstructure formation mechanism and properties of AZ61 alloy processed by melt treatment with vibrating cooling slope and semisolid rolling [J]. Metals and Materials International, 2013, 19(5): 1063–1067. DOI: https://doi.org/10.1007/s12540-013-5022-2.

    Article  Google Scholar 

  11. KHOSRAVI H, AKHLAGHI F. Comparison of microstructure and wear resistance of A356-SiCp composites processed via compocasting and vibrating cooling slope [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2490–2498. DOI: https://doi.org/10.1016/S1003-6326(15)63867-5.

    Article  Google Scholar 

  12. KUND N K, DUTTA P. Numerical study of solidification of A356 aluminum alloy flowing on an oblique plate with experimental validation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51: 159–170. DOI: https://doi.org/10.1016/j.jtice.2015.01.002.

    Article  Google Scholar 

  13. KUND N K, DUTTA P. Numerical study of influence of oblique plate length and cooling rate on solidification and macrosegregation of A356 aluminum alloy melt with experimental comparison [J]. Journal of Alloys and Compounds, 2016, 678: 343–354. DOI: https://doi.org/10.1016/j.jallcom.2016.02.152.

    Article  Google Scholar 

  14. SAFFARI S, AKHLAGHI F. Microstructure and mechanical properties of Al-Mg2Si composite fabricated in situ by vibrating cooling slope [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(4): 604–612. DOI: https://doi.org/10.1016/S1003-6326(18)64693-X.

    Article  Google Scholar 

  15. SHI Chen, SHEN Ke, MAO Da-heng, et al. Effects of ultrasonic treatment on microstructure and mechanical properties of 6016 aluminium alloy [J]. Materials Science and Technology, 2018, 34(12): 1511–1518. DOI: https://doi.org/10.1080/02670836.2018.1465514.

    Article  Google Scholar 

  16. SHI Chen, LI Fan, WU Yong-jun, et al. Effect of ultrasonic flexural vibration on solidification structure and mechanical properties of large-size 35CrMoV cast ingot [J]. Advances in Materials Science and Engineering, 2019, 2019: 1–8. DOI: https://doi.org/10.1155/2019/3421039.

    Google Scholar 

  17. RIEDEL E, HORN I, STEIN N, et al. Ultrasonic treatment: A clean technology that supports sustainability in casting processes [J]. Procedia CIRP, 2019, 80: 101–107. DOI: https://doi.org/10.1016/j.procir.2019.01.110.

    Article  Google Scholar 

  18. CHANKITMUNKONG S, ESKIN D G, LIMMANEEVICHITR C. Microstructure evolution in an Al-Si piston alloy under ultrasonic melt processing [J]. IOP Conference Series: Materials Science and Engineering, 2019, 529(1): 012060. DOI: https://doi.org/10.1088/1757-899x/529/1/012060.

    Article  Google Scholar 

  19. SRIVASTAVA N, CHAUDHARI G P. Effect of ultrasonic treatment on the mechanical behaviour of Al-Ni alloys [J]. Materials Science and Technology, 2019, 35(10): 1239–1247. DOI: https://doi.org/10.1080/02670836.2019.1618621.

    Article  Google Scholar 

  20. PUGA H, BARBOSA J, CARNEIRO V H. The role of acoustic pressure during solidification of AlSi7Mg alloy in sand mold casting [J]. Metals, 2019, 9(5): 490. DOI: https://doi.org/10.3390/met9050490.

    Article  Google Scholar 

  21. PENG Hao, LI Rui-qing, LI Xiao-qian, et al. Effect of multi-source ultrasonic on segregation of Cu elements in large Al-Cu alloy cast ingot [J]. Materials (Basel, Switzerland), 2019, 12(17): E2828. DOI: https://doi.org/10.3390/ma12172828.

    Article  MathSciNet  Google Scholar 

  22. YADAV D K, CHAKRABARTY I. Effect of cooling slope casting and partial remelting treatment on microstructure and mechanical properties of A319-xMg2Si in-situ composites [J]. Materials Science and Engineering A, 2020, 791: 139790. DOI: https://doi.org/10.1016/j.msea.2020.139790.

    Article  Google Scholar 

  23. RADHIKA N, SAM M. Tribological and wear performance of centrifuge cast functional graded copper based composite at dry sliding conditions [J]. Journal of Central South University, 2019, 26(11): 2961–2973. DOI: https://doi.org/10.1007/s11771-019-4228-y.

    Article  Google Scholar 

  24. MA Jun, NIU Li-bin, YAN Yu-ting, et al. Influence of heat treatment on microstructure and electrochemical behaviors of Mg-Zn binary alloys prepared by gas-phase alloying technique [J]. Journal of Central South University, 2020, 27(3): 762–771. DOI: https://doi.org/10.1007/s11771-020-4329-7.

    Article  Google Scholar 

  25. CHU Chen-liang, WU Xiao-quan, QIU Shui-cai, et al. Microstructure and Gd-rich phase evolution of as-cast AZ31-xGd magnesium alloys during semi-solid isothermal heat treatment [J]. Journal of Central South University, 2021, 28(1): 1–15. DOI: https://doi.org/10.1007/s11771-020-4504-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Kumar Kund.

Additional information

Foundation item

Project(SAP-9162) supported by the Ministry of Mines, Technology Information, Forecasting and Assessment Council (TIFAC) and Department of Science and Technology (DST), India

Contributors

Nirmal Kumar KUND provided the concept and edited the draft of manuscript. Pabak MOHAPATRA conducted the literature review and wrote the first draft of the manuscript. Both authors replied to reviewers’ comments and revised the final version.

Conflict of interest

Pabak MOHAPATRA and Nirmal Kumar KUND declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, P., Kund, N.K. Impact of ultrasonic power on liquid fraction, microstructure and physical characteristics of A356 alloy molded through cooling slope. J. Cent. South Univ. 29, 1098–1106 (2022). https://doi.org/10.1007/s11771-022-4942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4942-8

Key words

关键词

Navigation