Skip to main content
Log in

Enhancing microstructural properties of alumina ceramics via binary sintering aids

二元烧结助剂增强氧化铝陶瓷的微观结构及性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Alumina ceramics are widely used in many fields such as cutting tools, laser shock materials, roadbed board and refractory. Herein, Al2O3 ceramics are prepared by a low-cost pressureless sintering technology, using the binary sintering aids of MgO and SiO2. The effects of sintering temperature and the ratio of binary sintering aids on the mechanical properties and microstructure of Al2O3 ceramics are investigated. A spinel second phase (MgAl2O4) is found out by the analysis of the results of XRD and EDS when MgO and SiO2 are introduced in the samples. The optimum properties are found when MgO content is 20 wt% based on the total sintering aids and the sintering temperature is 1550 °C. The bending strength and the bulk density reach a maximum value of 314 MPa and 3.73 g/cm3, respectively. The addition of appropriate amount of SiO2 makes the formation of liquid phase sintering and the removal of large pores. Meanwhile, a small amount of magnesium oxide doping has an effect on the grain refinement from the microstructure of the sample. Therefore, it is believed that MgO and SiO2 are the ideal sintering aids for promoting the densification and property of alumina ceramics.

摘要

Al2O3陶瓷广泛应用于刀具, 激光冲击材料, 路基基板, 耐火材料等领域。本文以MgO和SiO2 作为烧结助剂, 通过低成本无压烧结技术制备了Al2O3陶瓷, 并研究了烧结温度和二元烧结助剂配比对 Al2O3陶瓷力学性能和显微组织的影响。XRD和EDS分析结果表明, 在样品中加入MgO和SiO2后形成 了尖晶石相(MgAl2O4)。当烧结助剂总量固定, MgO的掺加量为20 wt%, 烧结温度为1550 °C时, 烧 结性能最佳。烧结样品的抗弯强度和密度的最大值分别为314 MPa和3.73 g/cm3。适量SiO2的加入有利 于液相烧结形成和大孔隙的去除。同时, 从样品的微观结构来看, 少量MgO的掺入对晶粒细化产生了 影响。综上表明, MgO和SiO2是促进氧化铝陶瓷致密化和性能提升的理想烧结助剂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JIANG D, THOMSON K, KUNTZ J D, AGER J W, MUKHERJEE A K. Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite [J]. Scripta Materialia, 2007, 56(11): 959–962. DOI: https://doi.org/10.1016/j.scriptamat.2007.02.007.

    Article  Google Scholar 

  2. BAKKEN A, WAGNER S, HOFFMANN M J, THORSTENSEN B, EINARSRUD M, GRANDE T. Biaxial strength and slow crack growth in porous alumina with silica sintering aid [J]. Journal of the European Ceramic Society, 2018, 38(2): 665–670. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.09.010.

    Article  Google Scholar 

  3. GAO Hai-dong, WANG Ze-hua, SHAO Jia. Manufacture and characteristics of Al2O3 composite coating on steel substrate by SHS process [J]. Rare Metal, 2019, 38: 704–712. DOI: https://doi.org/10.1007/s12598-017-0974-x.

    Article  Google Scholar 

  4. YIN Zeng-bin, YAN Shi-yu, YE Jia-dong, ZHU Zhi-yong, YUAN Jun-tang. Cutting performance of microwave-sintered sub-crystal Al2O3/SiC ceramic tool in dry cutting of hardened steel [J]. Ceramics International, 2019, 45(13): 16113–16120. DOI: https://doi.org/10.1016/j.ceramint.2019.05.128.

    Article  Google Scholar 

  5. LIU Xiao-yan, ZOU Bin, XING Hong-yu, HUANG Chuan-zhen. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing [J]. Ceramics International, 2020, 46(1): 937–944. DOI: https://doi.org/10.1016/j.ceramint.2019.09.054.

    Article  Google Scholar 

  6. GAO Peng-yue, MA Yu-duo, SUN Wen-wei, YANG Yong, ZHANG Chen, CUI Yu-hang, WANG Yan-wei, DONG Yan-chun. Microstructure and properties of Al2O3-ZrO2-TiO2 composite coatings prepared by plasma spraying [J]. Rare Metal, 2021, 40: 1825–1834. DOI: https://doi.org/10.1007/s12598-020-01505-2.

    Article  Google Scholar 

  7. KLEINLOGEL C, GAUCKLER L J. Sintering and properties of nanosized ceria solid solutions [J]. Solid State Ionics, 2000, 135(1–4): 567–573. DOI: https://doi.org/10.1016/S0167-2738(00)00437-9.

    Article  Google Scholar 

  8. AMSIF M, MARRERO D, RUIZ-MORALES J C, SAVVIN S N, NÚÑEZA P. Effect of sintering aids on the conductivity of BaCe0.9Ln0.1O3−δ [J]. Journal of Power Sources, 2011, 196(22): 9154–9163. DOI: https://doi.org/10.1016/j.solidstatesciences.2012.04.001.

    Article  Google Scholar 

  9. XU Xi-qing, YANG Yan, WANG Xin-gang, SU Xing-hua, LIU Jia-chen. Low-temperature preparation of Al2O3-ZrO2 nanoceramics via pressureless sintering assisted by amorphous powders [J]. Journal of Alloys and Compounds, 2019, 783: 806–812. DOI: https://doi.org/10.1016/j.jallcom.2018.12.372.

    Article  Google Scholar 

  10. HU Hai-long, LUO Shi-bin. Fabrication and flexural strength of porous Si3N4 ceramics with Li2CO3 and Y2O3 as sintering additives [J]. Journal of Central South University, 2020, 27(9): 2548–2556. DOI: https://doi.org/10.1007/s11771-020-4480-1.

    Article  Google Scholar 

  11. YANG Hao, QIN Xian-peng, ZHANG Jian, MA J, TANG Ding-yuan, WANG Shi-wei, ZHANG Qi-tu. The effect of MgO and SiO2 codoping on the properties of Nd: YAG transparent ceramic [J]. Optical Materials, 2012, 34(6): 940–943. DOI: https://doi.org/10.1016/j.optmat.2011.05.029.

    Article  Google Scholar 

  12. KRAVTSOV A A, NIKOVA M S, VAKALOV D S, TARALA V A, CHIKULINA I S, MALYAVIN F F, CHAPURA O M, KRANDIEVSKY S O, KULESHOV D S, LAPIN V A. Combined effect of MgO sintering additive and stoichiometry deviation on YAG crystal lattice defects [J]. Ceramics International, 2019, 45(16): 20178–20188. DOI: https://doi.org/10.1016/j.ceramint.2019.06.287.

    Article  Google Scholar 

  13. MÄCHLER D, TÖPFER J. Effect of SiO2 sintering additive on the positive temperature coefficient of resistivity (PTCR) behavior of (Bi1/2Na1/2)0.10Ba0.90TiO3+CaO ceramics [J]. Materials Research Bulletin, 2017, 89: 217–223. DOI: https://doi.org/10.1016/j.materresbull.2017.02.005.

    Article  Google Scholar 

  14. AL-ATTAR A A, ZAEEM M A, AJEEL S A, LATIFF N E A. Effects of SiC, SiO2 and CNTs nano additives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method [J]. Journal of the European Ceramic Society, 2017, 37(4): 1635–1642. DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.10.035.

    Article  Google Scholar 

  15. LEE H Y, TSUI F C, LEE Y C. Structural and microstructural studies on SiC-SiO2 ceramic composites [J]. Materials Chemistry and Physics, 2019, 233: 203–212. DOI: https://doi.org/10.1016/j.matchemphys.2019.05.064.

    Article  Google Scholar 

  16. LEE Y C, LIN C W, LU Wei-hua, CHEN W J, LEE W H. Influence of SiO2 addition on the dielectric properties and microstructure of (Ba0.96Ca0.04) (Ti0.85Zr0.15)O3 ceramics [J]. Applied Ceramic Technology, 2009, 6: 692–701. DOI: https://doi.org/10.1111/j.1744-7402.2009.02379.x.

    Article  Google Scholar 

  17. PRISTINSKIY Y, PINARGOTE N W S, SMIRNOV A. The effect of MgO addition on the microstructure and mechanical properties of alumina ceramic obtained by spark plasma sintering [J]. Materialstoday: Proceedings, 2019, 19: 1990–1993. DOI: https://doi.org/10.1016/j.matpr.2019.07.058.

    Google Scholar 

  18. GALUSEK D, GHILLÁNYOVÁ K, SEDLÁČEK J, KOZÁNKOVÁ J, ŠAJGALÍK P. The influence of additives on microstrucutre of sub-micron alumina ceramics prepared by two-stage sintering [J]. Journal of the European Ceramic Society, 2012, 32(9): 1965–1970. DOI: https://doi.org/10.1016/j.jeurceramsoc.2011.11.038.

    Article  Google Scholar 

  19. WANG J, LIM S Y, NG S C, CHEW C H, GAN L M. Dramatic effect of a small amount of MgO addition on the sintering of Al2O3-5 vol% SiC nanocomposite [J]. Materials Letters, 1998, 33(5): 273–277. DOI: https://doi.org/10.1016/S0167-577X(97)00121-3.

    Article  Google Scholar 

  20. WOOK J, KIM D Y, HWANG N M. Effect of interface structure on the microstructural evolution of ceramics [J]. Journal of the American Ceramic Society, 2006, 89: 2369–2380. DOI: https://doi.org/10.1111/j.1551-2916.2006.01160.x.

    Article  Google Scholar 

  21. DEMUYNCK M, ERAUW J, BIEST O V, DELANNAY F, CAMBIER F. Densification of alumina by SPS and HP: A comparative study [J]. Journal of the European Ceramic Society, 2012, 32(9): 1957–1964. DOI: https://doi.org/10.1016/j.jeurceramsoc.2011.10.031.

    Article  Google Scholar 

  22. SUN Yang, XU Kun-hao, SUN Jia-lin, HUANG Yong, XUE Wei-jiang. Effect of MgO sintering additives on structure and performance of Al2O3 porous ceramic [J]. Journal of the Chinese Ceramic Society, 2015, 43(9): 1255–1260. DOI: https://doi.org/10.14062/j.issn.0454-5648.2015.09.13.

    Google Scholar 

  23. XIAO Ya, XIONG Ji, GUO Zhi-xing, LIU Jun-bo, ZHOU Li-ming, YE Jun-liu, ZHAO Wu. Microstructures and properties of PVD TiAlN coating deposited on cermets with different Ti(C, N) grain size [J]. Journal of Central South University, 2020, 27(3): 721–735. DOI: https://doi.org/10.1007/s11771-020-4326-x.

    Article  Google Scholar 

  24. LIU Wei-min, AI Xing, ZHAO Jun, ZHOU Yong-hui. Effect of sintering temperature on microstructure and mechanical properties of Al2O3-TiC-ZrO2 Ceramic Composites [J]. Advanced Materials Research, 2012: 476–478. DOI: https://doi.org/10.4028/www.scientific.net/AMR.476-478.1031.

  25. MEENA K L, KARUNAKAR D B. Effect of ZrO2 and MgO added in alumina on the physical and mechanical properties of spark plasma sintered nanocomposite [J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 281–290. DOI: https://doi.org/10.1016/j.ijrmhm.2019.03.009.

    Article  Google Scholar 

  26. PARK C W, YOON D Y. Effects of SiO2, CaO, and MgO additions on the grain growth of alumina [J]. Journal of the American Ceramic Society, 2004, 83(10): 2605–2609. DOI: https://doi.org/10.11115/2916.2000.tb01596.x.

    Article  Google Scholar 

Download references

Funding

Projects(11772207, U2130128) supported by the National Natural Science Foundation of China; Projects (E2019210042, E2017210065) supported by the Natural Science Foundation of Hebei Province, China; Project(QN2019137) supported by the Natural Science Foundation of the Hebei Education Department, China; Project (A2019210204) supported by the Natural Science Foundation of Hebei Province for Distinguished Young Scholars, China; Project (216Z4302G) supported by Central Government Guiding Local Science and Technology Development, China; Project supported by Youth Top-notch Talents Supporting Plan of Hebei Province, China

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-gang Yang  (杨治刚), De-jun Dong  (董德俊) or Jin-jin Zhao  (赵晋津).

Additional information

Contributors

YANG Zhi-gang and ZHAO Jin-jin provided the concept and edited the draft of manuscript. HU Yan-jun and YIN Zi-qiang conducted the literature review and wrote the first draft of the manuscript. GONG Yu-bo and YANG Zhan-ping analyzed the measured data. LIANG Yin-chun and DONG De-jun edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

HU Yan-jun, YIN Zi-qiang, GONG Yu-bo, YANG Zhi-gang, YANG Zhan-ping, LIANG Yin-chun, DONG De-jun, ZHAO Jin-jin declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Yj., Yin, Zq., Gong, Yb. et al. Enhancing microstructural properties of alumina ceramics via binary sintering aids. J. Cent. South Univ. 28, 3705–3713 (2021). https://doi.org/10.1007/s11771-021-4889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4889-1

Key words

关键词

Navigation