Skip to main content
Log in

Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells

高溶解性树枝状富勒烯衍生物电子传输材料的合成及其在钙钛矿太阳能电池中的应用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A series of shape-persistent polyphenylene dendritic C60 derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder [4+2] cycloaddition reaction. These increasing hyperbranched scaffolds could effectively enhance the solubility; notably, both first and second generation dendrimers, C60-G1 and C60-G2, demonstrated more than 5 times higher solubilities than pristine C60. Furthermore, both simulated and experimental data proved their promising solution-processabilities as electron-transporting layers (ETLs) for perovskite solar cells. As a result, the planar p-i-n structural perovskite solar cell could achieve a maximum power conversion efficiency of 14.7 % with C60-G2.

摘要

本文设计并合成了一系列单加成的树枝状C60衍生物作为电子传输材料, 其中, 材料的合成过程 采用无催化剂参与的Diels-Alder[4+2]环加成反应。得到的超支化C60的溶解性得到明显提高, 与原始的 C60相比, 第一代和第二代树枝状C60衍生物(C60-G1 和C60-G2)在有机相中的溶解度均提高了5 倍以上。 此外, 理论模拟和实验均表明, 树枝状C60衍生物可作为钙钛矿太阳能电池的电子传输层, 并同时具有 良好的溶液加工性能。在钙钛矿太阳能电池中, 以C60-G2 作为电子传输层的最大光电转换效率可达 14.7%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GAO Peng, GRÄTZEL M, NAZEERUDDIN M K. Organohalide lead perovskites for photovoltaic applications [J]. Energy Environ Sci, 2014, 7(8): 2448–2463. DOI: https://doi.org/10.1039/c4ee00942h.

    Article  Google Scholar 

  2. KIM Y H, CHO H, HEO J H, KIM T S, MYOUNG N, LEE C L, IM S H, LEE T W. Multicolored organic/inorganic hybrid perovskite light-emitting diodes [J]. Advanced Materials, 2015, 27(7): 1248–1254. DOI: https://doi.org/10.1002/adma.201403751.

    Article  Google Scholar 

  3. STRANKS S D, EPERON G E, GRANCINI G, MENELAOU C, ALCOCER M J, LEIJTENS T, HERZ L M, PETROZZA A, SNAITH H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156): 341–344. DOI: https://doi.org/10.1126/science.1243982.

    Article  Google Scholar 

  4. YOU Jing-bi, HONG Zi-ruo, YANG Yang, CHEN Qi, CAI Min, SONG T B, CHEN Chun-chao, LU Shi-rong, LIU Yong-sheng, ZHOU Huan-ping, YANG Yang. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. ACS Nano, 2014, 8(2): 1674–1680. DOI: https://doi.org/10.1021/nn406020d.

    Article  Google Scholar 

  5. CHANG Jian-hui, LIU Kun, LIN Si-yuan, YUAN Yong-bo, ZHOU Cong-hua, YANG Jun-liang. Solution-processed perovskite solar cells [J]. Journal of Central South University, 2020, 27(4): 1104–1133. DOI: https://doi.org/10.1007/s11771-020-4353-7.

    Article  Google Scholar 

  6. CHEN Wei, SHI Yong-qiang, WANG Yang, FENG Xi-yuan, DJURIŠIĆ A B, WOO H Y, GUO Xu-gang, HE Zhu-bing. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86% [J]. Nano Energy, 2020, 68: 104363. DOI: https://doi.org/10.1016/j.nanoen.2019.104363.

    Article  Google Scholar 

  7. AL-ASHOURI A, KÖHNEN E, LI B, MAGOMEDOV A, HEMPEL H, CAPRIOGLIO P, MÁRQUEZ J A, MORALES VILCHES A B, KASPARAVICIUS E, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction [J]. Science, 2020, 370(6522): 1300–1309. DOI: https://doi.org/10.1126/science.abd4016.

    Article  Google Scholar 

  8. AL-ASHOURI A, MAGOMEDOV A, ROß M, JOŠT M, TALAIKIS M, CHISTIAKOVA G, BERTRAM T, MÁRQUEZ J A, KÖHNEN E, et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells [J]. Energy & Environmental Science, 2019, 12(11): 3356–3369. DOI: https://doi.org/10.1039/c9ee02268f.

    Article  Google Scholar 

  9. CHEN Shang-shang, LIU Ye, XIAO Xun, YU Zhen-hua, DENG Ye-hao, DAI Xue-zeng, NI Zhen-yi, HUANG Jin-song. Identifying the soft nature of defective perovskite surface layer and its removal using a facile mechanical approach [J]. Joule, 2020, 4(12): 2661–2674. DOI: https://doi.org/10.1016/j.joule.2020.10.014.

    Article  Google Scholar 

  10. YANG Guang, WANG Yu-long, XU Jia-ju, LEI Hong-wei, CHEN Cong, SHAN Hai-quan, LIU Xiao-yuan, XU Zong-xiang, FANG Guo-jia. A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability [J]. Nano Energy, 2017, 31: 322–330. DOI: https://doi.org/10.1016/j.nanoen.2016.11.039.

    Article  Google Scholar 

  11. YANG W S, PARK B W, JUNG E H, JEON N J, KIM Y C, LEE D U, SHIN S S, SEO J, KIM E K, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells [J]. Science, 2017, 356(6345): 1376–1379. DOI: https://doi.org/10.1126/science.aan2301.

    Article  Google Scholar 

  12. SAID A A, XIE Jian, ZHANG Qi-chun. Recent progress in organic electron transport materials in inverted perovskite solar cells [J]. Small, 2019, 15(27): 1900854. DOI: https://doi.org/10.1002/smll.201900854.

    Article  Google Scholar 

  13. SAID A A, XIE Jian, WANG Yang, WANG Zong-rui, ZHOU Yu, ZHAO Ke-xiang, GAO Wei-bo, MICHINOBU T, ZHANG Qi-chun. Efficient inverted perovskite solar cells by employing N-type (D-A1-D-A2) polymers as electron transporting layer [J]. Small, 2019, 15(29): 1803339. DOI: https://doi.org/10.1002/smll.201803339.

    Article  Google Scholar 

  14. GU Pei-yang, WANG Ning, WU An-yang, WANG Zi-long, TIAN Miao-miao, FU Zhi-sheng, SUN Xiao-wei, ZHANG Qi-chun. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells [J]. Chemistry-an Asian Journal, 2016, 11(15): 2135–2138. DOI: https://doi.org/10.1002/asia.201600856.

    Article  Google Scholar 

  15. CHEN Cheng, LIU Si-zhou, LI Zhi-peng, WANG Fang-fang, XU Wen-xin, MA Hong-zhuang, ZHANG Shi-tong, WANG Ling-ling, GU Cheng, et al. Accurately stoichiometric regulating oxidation states in hole transporting material to enhance the hole mobility of perovskite solar cells [J]. Solar RRL, 2020, 4(6): 2000127. DOI: https://doi.org/10.1002/solr.202000127.

    Article  Google Scholar 

  16. LEE P H, LI Bo-ting, LEE C F, HUANG Zhi-hao, HUANG Y C, SU Wei-fang. High-efficiency perovskite solar cell using cobalt doped nickel oxide hole transport layer fabricated by NIR process [J]. Solar Energy Materials and Solar Cells, 2020, 208: 110352. DOI: https://doi.org/10.1016/j.solmat.2019.110352.

    Article  Google Scholar 

  17. ZHU Jiang-nan, SONG Wen-xuan, ZHANG Tian-mei, DONG Qing-chen, HUANG Jin-hai, ZHOU Hai-tao, SU Jian-hua. Tetrabenzeneaza macrocycle: A novel platform for universal high-performance hole transport materials [J]. Dyes and Pigments, 2021, 186: 108981. DOI: https://doi.org/10.1016/j.dyepig.2020.108981.

    Article  Google Scholar 

  18. KE Wei-jun, FANG Guo-jia, LIU Qin, XIONG Liang-bin, QIN Ping-li, TAO Hong, WANG Jing, LEI Hong-wei, LI Bo-rui, et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells [J]. Journal of the American Chemical Society, 2015, 137(21): 6730–6733. DOI: https://doi.org/10.1021/jacs.5b01994.

    Article  Google Scholar 

  19. DENG Kai-mo, CHEN Qing-hua, LI Liang. Modification engineering in SnO2 electron transport layer toward perovskite solar cells: Efficiency and stability [J]. Advanced Functional Materials, 2020, 30(46): 2004209. DOI: https://doi.org/10.1002/adfm.202004209.

    Article  Google Scholar 

  20. ZHANG Meng, CUI Xun, WANG Yu-fen, WANG Bing, YE Mei-dan, WANG Wen-long, MA Chun-yuan, LIN Zhi-qun. Simple route to interconnected, hierarchically structured, porous Zn2SnO4 nanospheres as electron transport layer for efficient perovskite solar cells [J]. Nano Energy, 2020, 71: 104620. DOI: https://doi.org/10.1016/j.nanoen.2020.104620.

    Article  Google Scholar 

  21. MATHIES F, LIST-KRATOCHVIL E J W, UNGER E L. Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices [J]. Energy Technology, 2020, 8(4): 1900991. DOI: https://doi.org/10.1002/ente.201900991.

    Article  Google Scholar 

  22. FENG L, YUAN J, ZHANG Z, PENG H, ZHANG Z G, XU S, LIU Y, LI Y, ZOU Y. Thieno[3, 2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics [J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31985–31992. DOI: https://doi.org/10.1021/acsami.7b10995.

    Article  Google Scholar 

  23. CAO Rui, CHEN Yu, CAI Fang-fang, CHEN Hong-gang, LIU Wei, GUAN Hui-lan, WEI Qing-ya, LI Jing, CHANG Qin, et al. A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency [J]. Journal of Central South University, 2020, 27(12): 3581–3593. DOI: https://doi.org/10.1007/s11771-020-4501-0.

    Article  Google Scholar 

  24. LI Zhe, CHEN Hong-gang, YUAN Jun, ZOU Jie, LI Jing, GUAN Hui-lan, ZOU Ying-ping. A new low-bandgap polymer acceptor based on benzotriazole for efficient allpolymer solar cells [J]. Journal of Central South University, 2021, 28(7): 1919–1931. DOI: https://doi.org/10.1007/s11771-021-4741-7.

    Article  Google Scholar 

  25. AHMAD T, WILK B, RADICCHI E, FUENTES PINEDA R, SPINELLI P, HERTERICH J, CASTRIOTTA L A, DASGUPTA S, MOSCONI E, et al. New fullerene derivative as an n-type material for highly efficient, flexible perovskite solar cells of a p-i-n configuration [J]. Advanced Functional Materials, 2020, 30(45): 2004357. DOI: https://doi.org/10.1002/adfm.202004357.

    Article  Google Scholar 

  26. XU Ji-xian, BUIN A I P, ALEXANDER H, LI Wei, VOZNYY O, COMIN R, YUAN Ming-jian, JEON S, NING Zhi-jun, MCDOWELL J J, KANJANABOOS P, SUN J P, LAN Xin-zheng, QUAN Li-na, KIM D H. Materials suppress hysteresis in planar diodes [J]. Nat Commun, 2015, 6(1): 7081. DOI: https://doi.org/10.1038/ncomms8081.

    Article  Google Scholar 

  27. GATTI T, MENNA E, MENEGHETTI M, MAGGINI M, PETROZZA A, LAMBERTI F. The Renaissance of fullerenes with perovskite solar cells [J]. Nano Energy, 2017, 41: 84–100. DOI: https://doi.org/10.1016/j.nanoen.2017.09.016.

    Article  Google Scholar 

  28. SHAO Y, XIAO Z, BI C, YUAN Y, HUANG J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells [J]. Nature Communications, 2014, 5: 5784. DOI: https://doi.org/10.1038/ncomms6784.

    Article  Google Scholar 

  29. PONSECA C S, HUTTER E M, PIATKOWSKI P, COHEN B, PASCHER T, DOUHAL A, YARTSEV A, SUNDSTRÖM V, SAVENIJE T J. Mechanism of charge transfer and recombination dynamics in organo metal halide perovskites and organic electrodes, PCBM, and spiro-OMeTAD: Role of dark carriers [J]. Journal of the American Chemical Society, 2015, 137(51): 16043–16048. DOI: https://doi.org/10.1021/jacs.5b08770.

    Article  Google Scholar 

  30. SHAO Yu-chuan, YUAN Yong-bo, HUANG Jin-song. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells [J]. Nature Energy, 2016, 1: 15001. DOI: https://doi.org/10.1038/nenergy.2015.1.

    Article  Google Scholar 

  31. XIN Hao, SUBRAMANIYAN S, KWON T W, SHOAEE S, DURRANT J R, JENEKHE S A. Enhanced open circuit voltage and efficiency of donor-acceptor copolymer solar cells by using indene-C60 bisadduct [J]. Chemistry of Materials, 2012, 24(11): 1995–2001. DOI: https://doi.org/10.1021/cm300355e.

    Article  Google Scholar 

  32. LUO Zheng-hui, WU Fei, ZHANG Teng, ZENG Xuan, XIAO Yi-qun, LIU Tao, ZHONG Cheng, LU Xin-hui, ZHU Lin-na, et al. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability [J]. Angewandte Chemie International Edition, 2019, 58(25): 8520–8525. DOI: https://doi.org/10.1002/anie.201904195.

    Article  Google Scholar 

  33. LIU Z, LIU P, HE T, ZHAO L, ZHANG X, YANG J, YANG H, LIU H, QIN R, et al. Tuning surface wettability of buffer layers by incorporating polyethylene glycols for enhanced performance of perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26670–26679. DOI: https://doi.org/10.1021/acsami.0c05527.

    Article  Google Scholar 

  34. CHEN Ke, HU Qin, LIU Tang-hao, ZHAO Li-chen, LUO De-ying, WU Jiang, ZHANG Yi-fei, ZHANG Wei, LIU Feng, et al. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells [J]. Advanced Materials, 2016, 28(48): 10718–10724. DOI: https://doi.org/10.1002/adma.201604048.

    Article  Google Scholar 

  35. LIN H K, SU Yu-wei, CHEN H C, HUANG Y J, WEI K H. Block copolymer-tuned fullerene electron transport layer enhances the efficiency of perovskite photovoltaics [J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24603–24611. DOI: https://doi.org/10.1021/acsami.6b07690.

    Article  Google Scholar 

  36. JENG J Y, CHIANG Yi-fang, LEE M H, PENG S R, GUO T F, CHEN P, WEN T C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells [J]. Advanced Materials, 2013, 25(27): 3727–3732. DOI: https://doi.org/10.1002/adma.201301327.

    Article  Google Scholar 

  37. SHAO Y, XIAO Z, BI C, YUAN Y, HUANG J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells [J]. Nature Communications, 2014, 5: 5784. DOI: https://doi.org/10.1038/ncomms6784.

    Article  Google Scholar 

  38. MALINKIEWICZ O, YELLA A, LEE Y H, ESPALLARGAS G M, GRAETZEL M, NAZEERUDDIN M K, BOLINK H J. Perovskite solar cells employing organic charge-transport layers [J]. Nature Photonics, 2014, 8(2): 128–132. DOI: https://doi.org/10.1038/nphoton.2013.341.

    Article  Google Scholar 

  39. WEIL T, WIESLER U M, HERRMANN A, BAUER R, HOFKENS J, DE SCHRYVER F C, MÜLLEN K. Polyphenylene dendrimers with different fluorescent chromophores asymmetrically distributed at the periphery [J]. Journal of the American Chemical Society, 2001, 123(33): 8101–8108. DOI: https://doi.org/10.1021/ja010579g.

    Article  Google Scholar 

Download references

Funding

Projects(2017YFE0131900, 2017YFB0404500) supported by National Key Research and Development Program of China; Projects(91833306, 91733302, 62075094) supported by the National Natural Science Foundation of China; Project(202003N4004) supported by the Ningbo Natural Science Foundation, China; Project(2020GXLH-Z-014) supported by the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University, China

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-fei Wang  (王艾菲) or Tian-shi Qin  (秦天石).

Additional information

Contributors

FANG Yin-yu and MA Tao-tao provided the concept and provided the measured data. LIU Fang, GAO Song and YAN Su-hao analyzed the measured data. The initial draft of the manuscript was written by WANG Ai-fei, FANG Yin-yu, and QIN Tian-shi. CHENG Zheng-chun and DI Yi edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

CHENG Zheng-chun, FANG Yin-yu, WANG Ai-fei, MA Tao-tao, LIU Fang, GAO Song, YAN Su-hao, DI Yi, and QIN Tian-shi declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Zc., Fang, Yy., Wang, Af. et al. Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells. J. Cent. South Univ. 28, 3714–3727 (2021). https://doi.org/10.1007/s11771-021-4885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4885-5

Key words

关键词

Navigation