Skip to main content
Log in

Second-order modeling of non-premixed turbulent methane-air combustion

非预混湍流甲烷-空气燃烧的二阶建模

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The main purpose of this research is the second-order modeling of flow and turbulent heat flux in non-premixed methane-air combustion. A turbulent stream of non-premixed combustion in a stoichiometric condition, is numerically analyzed through the Reynolds averaged Navier-Stokes (RANS) equations. For modeling radiation and combustion, the discrete ordinates (DO) and eddy dissipation concept model have been applied. The Reynolds stress transport model (RSM) also was used for turbulence modeling. For THF in the energy equation, the GGDH model and high order algebraic model of HOGGDH with simple eddy diffusivity model have been applied. Comparing the numerical results of the SED model (with the turbulent Prandtl 0.85) and the second-order heat flux models with available experimental data follows that applying the second-order models significantly led to the modification of predicting temperature distribution and species mass fraction distribution in the combustion chamber. Calculation of turbulent Prandtl number in the combustion chamber shows that the assumption of Prt of 0.85 is far from reality and Prt in different areas varies from 0.4 to 1.2.

摘要

本研究的主要目的是对非预混甲烷-空气燃烧中的流动和湍流热通量进行二阶建模。采用雷诺平 均Navier-stokes (RANS)方程对化学计量条件下非预混燃烧的湍流进行了数值分析。采用离散坐标 和涡流耗散概念模型对辐射和燃烧进行建模, 并采用RSM 模型对湍流进行建模。应用GGDH 模型和 具有简单涡扩散模型的HOGGDH 高阶代数模型对能量方程中的THF 进行建模, 将SED 模型和二阶热 通量模型的数值结果与现有的实验数据进行比较, 发现应用二阶模型导致了预测燃烧室温度分布和物 质质量分数分布的变化。燃烧室湍流普朗特数的计算表明, Pr 为0.85 与实际相差较大,不同区域的 Pr 从0.4 到1.2 不等。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(uT)* :

Dimensionless components of the of THF vector

c p :

Heat capacity (kJ/(kg · K))

u i, u j :

Velocity vector components (m/s)

k :

Turbulent kinetic energy (m2/s2)

t :

Time (s)

T :

Temperature (K)

Y :

Mass fraction

P :

Pressure (Pa)

μ :

Dynamic molecular viscosity (kg/(m·s))

ρ :

Density (kg/m3)

ε H :

Heat eddy diffusivity (m·K/s2)

ε M :

Momentum eddy diffusivity (m·K/s2)

υ :

Kinematic viscosity (m2/s)

υ :

Dissipation rate of the turbulent kinetic energy (m2/s3)

τ :

Turbulent time scale (s)

Favre average:

Reynolds average:

References

  1. TURNS S R, MANTEL S J, An introduction to combustion [M]. 2nd eds. New York: McGraw Hill, 2000.

    Google Scholar 

  2. WISEMAN S, RIRTH M, GRUBER A, DAWSON J, CHEN J. A comparison of the blow-out behavior of turbulent premixed ammonia/ hydrogen/nitrogen-air and methane — air flames [J]. Proceedings of the Combustion Institute, 2021, 38(2): 2869–2876. DOI: https://doi.org/10.1016/j.proci.2020.07.011.

    Article  Google Scholar 

  3. LEE J, MUELLER M. Closure modeling for the conditional Reynolds stresses in turbulent premixed combustion [J]. Proceedings of the Combustion Institute, 2021, 38(2): 3031–3038. DOI: https://doi.org/10.1016/j.proci.2020.07.046.

    Article  Google Scholar 

  4. YU S, LIU X, BAI X S, ELBAZ A M, ROBERTS W L. LES/PDF modeling of swirl-stabilized non-premixed methane/air flames with local extinction and re-ignition [J]. Combustion and Flame, 2020, 219: 102–119. DOI: https://doi.org/10.1016/j.combustflame.2020.05.018.

    Article  Google Scholar 

  5. SHIN J, GE Y, LAMPMANN A, PFITZER M. Adata-driven subgrid scale model in large eddy simulation of turbulent premixed combustion [J]. Combustion and Flame, 2021, 231: 111486. DOI: https://doi.org/10.1016/j.combustflame.2021.111486.

    Article  Google Scholar 

  6. LUO K, YANG J, BAI Y, FAN J. Large eddy simulation of turbulent combustion by a dynamic Second-order moment closure model [J]. Fuel, 2017, 187: 457–467. DOI: https://doi.org/10.1016/j.fuel.2016.09.074.

    Article  Google Scholar 

  7. ZIANI L, CHAKER A, CHETEHOUNA K, MALEK A, MAHMAH B. Numerical simulations of non-premixed turbulent combustion of CH4 — H2 mixtures using the PDF approach [J]. Int J Hydrogen Energy, 2013, 38(20): 8597–8603. DOI: https://doi.org/10.1016/j.ijhydene.2012.11.104.

    Article  Google Scholar 

  8. ROY R N, SREEDHARA S. Modelling of methanol and H2/CO bluffbody flames using RANS based turbulence models with conditional moment closure model [J]. Appl Therm Eng, 2016, 93: 61–70. DOI: https://doi.org/10.1016/j.applthermaleng.2015.09.073.

    Article  Google Scholar 

  9. WEN X, WANG P, MAN S. Numerical study of performance of reverse flow combustor [C]// IEEE Aerospace Conference, 2016: 1–13. DOI: https://doi.org/10.1109/AERO.2016.7500596.

  10. NORWAZAN A, JAAFAR M. Studies of isothermal swirling flows with different RANS models in unconfined burner [C]// IEEE, World Congress on Sustainable Technologies (WCST-2014), 2014: 48–53. DOI: https://doi.org/10.1109/WCST.2014.7030095.

  11. ALEMI E, RAJABI-ZARGARABADI M. Effects of jet characteristics on NO formation in a jet-stabilized combustor [J]. Int Journal of Thermal Science, 2017, 112: 55–67. DOI: https://doi.org/10.1016/j.ijthermalsci.2016.10.001.

    Article  Google Scholar 

  12. YILMAZ H, CAM O, TANGOZ S, YILMAZ I. Effect of different turbulence models on combustion and emission characteristics of hydrogen/air flames [J]. Int Journal of Hydrogen Energy, 2017, 42(40): 25744–25755. DOI: https://doi.org/10.1016/j.ijhydene.2017.04.080.

    Article  Google Scholar 

  13. HOSSAIN M, JONES JC, MALALASEKERA W. Modelling of a bluff-body non-premixed flame using a coupled radiation/flamelet combustion model [J]. Flow Turbulence and Combustion, 2001, 67: 217–234. DOI: https://doi.org/10.1023/A:1015014823282.

    Article  Google Scholar 

  14. SILVA C V, FRANCA F H, VIELMO H A. Analysis of the turbulent, non-premixed combustion of natural gas in a cylindrical chamber with and without thermal radiation [J]. Combust Sci and Tech, 2007, 179: 1605–1630. DOI: https://doi.org/10.1080/00102200701244710.

    Article  Google Scholar 

  15. GARRE’TON D, SIMONIN O. Aerodynamics of steady state combustion chambers and furnaces. Final results [C]//Proceedings of the First Workshop. Chatou, France: EDF, 1994: 29–35. https://www.ercoftac.org/publications/ercoftac_bulletin/bulletin-25/.

    Google Scholar 

  16. LAUNDER B E. On the computation of convective heat transfer in complex turbulent flows [J]. Journal of Heat Transfer, 1986, 110: 1112–1128. DOI: https://doi.org/10.1115/1.3250614.

    Article  Google Scholar 

  17. WIKSTROM P M. Derivation and investigation of a new explicit algebraic model for the passive scalar flux [J]. Physics of Fluids, 2000, 12: 688–702. DOI: https://doi.org/10.1063/1.870274.

    Article  Google Scholar 

  18. ABE K, SUGA K. Towards the development of a Reynolds-averaged algebraic turbulent scalar flux model [J]. Int Journal of Heat and Fluid Flow, 2001, 22: 19–29. DOI: https://doi.org/10.1016/S0142-727X(00)00062-X.

    Article  Google Scholar 

  19. ROGERS M, MANSOUR N, REYNOLDS W C. An algebraic model for the turbulent flux of a passive scalar [J]. Journal of Fluid Mechanics, 1989, 203: 77–101. DOI: https://doi.org/10.1017/S0022112089001382.

    Article  Google Scholar 

  20. NAGANO Y, SHIMADA M. Development of a two-equation heat transfer model based on direct simulations of turbulent flows with different Prandtl numbers [J]. Physics of Fluids, 1996, 8: 3379–3402. DOI: https://doi.org/10.1063/L869124.

    Article  Google Scholar 

  21. YANG Wei-hong, JIANG Shan-jiang, HSIAO Tse-chiang, YANG Li-xing. Numerical simulation of high temperature air combustion flames properties [J]. Journal of Central South University, 2000, 7(3): 156–158. DOI: https://doi.org/10.1007/s11771-000-0027-7.

    Article  Google Scholar 

  22. CHEN Hai, LIU Wei-qiang. Numerical study of effect of front cavity on hydrogen/air premixed combustion in a microcombustion chamber [J]. Journal of Central South University, 2019, 26(8): 2259–2271. DOI: https://doi.org/10.1007/s11771-019-4171-y.

    Article  Google Scholar 

  23. DALY B J, HARLOW F H. Transport Equation in Turbulence [J]. Phys. Fluids, 1970, 13: 2634–2649. DOI: https://doi.org/10.1063/1.1692845.

    Article  Google Scholar 

  24. SUGA K, ABE K. Nonlinear eddy viscosity modeling for turbulence and heat transfer near wall and shear-free boundaries [J]. Int Journal of Heat and Fluid Flow, 2000, 21: 37–48. DOI: https://doi.org/10.1016/S0142-727X(99)00060-0.

    Article  Google Scholar 

  25. MAGEL H, SCHNELL U, HEIN K R G. Simulation of detailed chemistry in a turbulent combustor flow [J]. Symposium (International) on Combustion, 1669, 26(1): 67–74. DOI: https://doi.org/10.1016/S0082-0784(96)80201-3.

    Article  Google Scholar 

  26. CENTENO F R, DA-SILVA C V, BRITTES R, FRANCA FHR. Numerical simulations of the radiative transfer in a 2D axisymmetric turbulent non-premixed methane–air flame using up-to-date WSGG and gray-gas models [J]. J Braz Soc Mech Sci Eng, 2015, 37(6): 1839–1850. DOI: https://doi.org/10.1007/s40430-015-0425-2.

    Article  Google Scholar 

  27. DA-SILVA C V, DEON D L, CENTENO F R, FRANCA F H R, PEREIRA FM. Assessment of combustion models for numerical simulations of a turbulent non-premixed natural gas flame inside a cylindrical chamber [J]. Combustion Science and Technology, 2018, 190(9): 1528–1556. DOI: https://doi.org/10.1080/00102202.2018.1456430.

    Article  Google Scholar 

  28. CENTENO F R, BRITTES R, FRANCA F H R, DA-SILVA C V. Application of the WSGG model for the calculation of gas–soot radiation in a turbulent non-premixed methane-air flame inside a cylindrical combustion chamber [J]. Int J of Heat and Mass Transfer, 2016, 93: 742–753. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.054.

    Article  Google Scholar 

  29. CHOUAIEB S, KRIAA W, MHIRI H, BOURNOT P. Presumed PDF modeling of micro jet assisted CH4-H2/air turbulent flames [J]. Energy Conversion and Management, 2016, 120: 412–421. DOI: https://doi.org/10.1016/j.enconman.2016.05.003.

    Article  Google Scholar 

  30. LUO Xiao, LIU Ping-le, LUO He-an. Improvement of Prandtl mixing length theory and application in modeling of turbulent flow in circular tubes [J]. Journal of Central South University, 2008, 15: 774–778. DOI: https://doi.org/10.1007/s11771-008-0143-3.

    Article  Google Scholar 

  31. JIANG Guang-biao, HE Yong-sen, SHU Shi, XIAO Yin-xiong. Numerical prediction of inner turbulent flow in conical diffuser by using a new five-point scheme and DLR ke turbulence model [J]. Journal of Central South University, 2008, 15(S1): 181–186. DOI: https://doi.org/10.1007/s11771-008-342-y.

    Article  Google Scholar 

  32. HINZE J O. Turbulence [M]. New York: McGraw-Hill Publishing Co., 1975.

    Google Scholar 

  33. ANSYS. FLUENT user’s manual, 2016, Version 17 [M]. ANSYS Inc, 2016.

  34. LI X, REN J, JIANG H. Application of algebraic anisotropic turbulence models to film cooling flows [J]. Int J of Heat and Mass Transfer, 2015, 91: 7–17. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.098.

    Article  Google Scholar 

  35. SUGA K, NAGAOKA M, HORINOUCHI N. Application of a higher order GGDH heat flux model to three-dimensional turbulent U-bend duct heat transfer [J]. Journal of Heat Transfer, Technical Notes, 2003, 125: 200–203. DOI: https://doi.org/10.1115/1.1532018.

    Article  Google Scholar 

  36. E Jia-qiang, WU Jiang-hua, LIU Teng, CHEN Jing-wei, DENG Yuan-wang, PENG Qing-guo. Effects analysis on catalytic combustion characteristic of hydrogen/air in the micro turbine engine by fuzzy grey relation method [J]. Journal of Central South University, 2019, 26(8): 2214–2223. DOI: https://doi.org/10.1007/s11771-019-4167-7.

    Article  Google Scholar 

  37. HISHIDA M, NAGANO Y. Structure of turbulent velocity and temperature fluctuations in fully developed pipe flow [J]. J Heat Transfer, 1979, 101: 15–22. DOI: https://doi.org/10.1115/1.3450908.

    Article  Google Scholar 

  38. RAJABI-ZARGARABADI M, BAZDIDI-TEHRANI F. Implicit algebraic model for predicting THF in film cooling flow [J]. Int J Numer Meth Fluids, 2010, 64: 517–531. DOI: https://doi.org/10.1002/fld.2157.

    Article  Google Scholar 

  39. BAZDIDI-TEHRANI F, RAJABI-ZARGARABADI M. Application of second moment closure and higher order generalized gradient diffusion hypothesis to impingement heat transfer [J]. Transactions of the Canadian Society for Mechanical Engineering, 2008, 32(1): 91–106. DOI: https://doi.org/10.1139/tcsme-2008-0007.

    Article  Google Scholar 

  40. BAE Y Y. A new formulation of variable turbulent Prandtl number for heat transfer to supercritical fluids [J]. Int J of Heat and Mass Transfer, 2016, 92: 792–806. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mehran RAJABI ZARGARABADI provided the concept and edited the draft of manuscript. Ali ERSHADI conducted the literature review and wrote the first draft of the manuscript. Ali ERSHADI performed the numerical simulations and analyzed the results. Mehran RAJABI ZARGARABADI and Ali ERSHADI edited the draft of manuscript, replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Mehran Rajabi Zargarabadi.

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershadi, A., Rajabi Zargarabadi, M. Second-order modeling of non-premixed turbulent methane-air combustion. J. Cent. South Univ. 28, 3545–3555 (2021). https://doi.org/10.1007/s11771-021-4874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4874-8

Key words

关键词

Navigation