Skip to main content
Log in

An advanced turbulator with blades and semi-conical section for heat transfer improvement in a helical double tube heat exchanger

一种改进螺旋双管换热器传热性能的叶片半圆锥形紊流器

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In present work, a helical double tube heat exchanger is proposed in which an advanced turbulator with blades, semi-conical part, and two holes is inserted in inner section. Two geometrical parameters, including angle of tabulator’s blades (θ) and number of tabulator’s blades (N), are considered. Results indicated that firstly, the best thermal stratification is achieved at θ=180°. Furthermore, at the lowest studied mass flow rate (\(\dot m = 8 \times {10^{ - 3}}\,{\rm{kg}}/{\rm{s}}\)), heat transfer coefficient of turbulator with blade angle of 180° is 130.77%, 25%, and 36.36% higher than cases including without turbulator, with turbulator with blade angle of θ=240°, and θ =360°, respectively. Moreover, case with N=12 showed the highest overall performance. At the highest studied mass flow rate (\(\dot m = 5.842 \times {10^{ - 2}}{\rm{kg}}/{\rm{s}}\)), heat transfer coefficient for case with N=12 is up to 54.76%, 27.45%, and 6.56% higher than cases including without turbulator, with turbulator with N=6, and with turbulator with N=9, respectively.

摘要

本文提出了一种内部具有叶片及半圆锥形双孔紊流器的螺旋双管换热器。研究了紊流叶片角θ和紊流叶片数N 对传热性能的影响。结果表明: 热分层在θ=180°时达到最佳; 在最小质量流率(=8×10−3 kg/s)条件下, 叶片倾角为180°的紊流器的换热系数比不含紊流器、及叶片倾角为240°和360°的紊 流器分别高130.77%、25% 和36.36%。N=12 的综合性能表现最好。在最大质量流率下(=5.842×10−2 kg/s), N=12 时的换热系数比无紊流器、叶片数为6 和9 时的换热系数分别提高了54.76%、27.45% 和6.56%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

Specific heat capacity, kJ/(kg·K)

D i :

Diameter of cold channel, m

d i :

Diameter of hot channel, m

f :

Darcy friction factor

g :

Gravitational acceleration, m/s2

h :

Heat transfer coefficient, W/(m2·K)

h t :

Height of the tabulator’s blades, m

k :

Thermal conductivity, W/(m·K)

N :

Blade number of the tabulator

P :

Pressure, Pa

R :

Radius of the heat exchanger round, m

R C :

Radius of the coil, m

R i :

Inner radius of the proposed Turbulator, m

R o :

Outer radius of the proposed Turbulator, m

r :

Radius of the channel of the Turbulator, m

r i :

Radius of the Turbulator’s holes, m

S :

Source term, kJ/m3

T :

Temperature, °C

t :

Time, s

u :

Fluid velocity, m/s

w :

Thickness of the turbulator’s blades, m

Pr :

Prandtl number [Pr=(cp·μ)/k]

Pe :

Péclet number [Pe = Re·Pr]

Re :

Reynolds number [Re=(ρ·u·d)/μ]

Nu :

Nusselt number [Nu=(h·d)/k]

ρ :

Density, kg/m3

μ :

Viscosity, Pa·s

θ :

Angle of the tabulator’s blades, (°)

η :

Overall performance

0:

Reference

m:

Average

h:

Hydraulic

t:

Turbulator

References

  1. LIU S, SAKR M. A comprehensive review on passive heat transfer enhancements in pipe exchangers [J]. Renewable and Sustainable Energy Reviews, 2013, 19: 64–81. DOI: https://doi.org/10.1016/j.rser.2012.11.021.

    Article  Google Scholar 

  2. ROHSENOW W M, HARTNETT J P, CHO Y I. Handbook of heat transfer. Vol. 3 [M]. New York: McGraw-Hill, 1998. ISBN 0-07-053555-8

    Google Scholar 

  3. NOORBAKHSH M, ZABOLI M, MOUSAVI AJAROSTAGHI S S. Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1341–1353. DOI: https://doi.org/10.1007/s10973-019-08509-w.

    Article  Google Scholar 

  4. OLFIAN H, ZABIHI SHESHPOLI A, MOUSAVI AJAROSTAGHI S S. Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles [J]. Heat Transfer, 2020, 49(3): 1149–1169. DOI: https://doi.org/10.1002/htj.21656.

    Article  Google Scholar 

  5. OUTOKESH M, AJAROSTAGHI S S M, BOZORGZADEH A, SEDIGHI K. Numerical evaluation of the effect of utilizing twisted tape with curved profile as a turbulator on heat transfer enhancement in a pipe [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1537–1553. DOI: https://doi.org/10.1007/s10973-020-09336-0.

    Article  Google Scholar 

  6. HASHEMI KAROUEI S H, AJAROSTAGHI S S M, GORJI-BANDPY M, HOSSEINI FARD S R. Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double-pipe heat exchanger equipped with an innovative curved conical turbulator [J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(2): 1455–1466. DOI: https://doi.org/10.1007/s10973-020-09425-0.

    Article  Google Scholar 

  7. MOUSAVI AJAROSTAGHI S S, SHIRZAD M, RASHIDI S, LI L K B. Heat transfer performance of a nanofluid-filled tube with wall corrugations and center-cleared twisted-tape inserts [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1841860. DOI: https://doi.org/10.1080/15567036.2020.1841860.

  8. RASHIDI S, ZADE N M, ESFAHANI J A. Thermo-fluid performance and entropy generation analysis for a new eccentric helical screw tape insert in a 3D tube [J]. Chemical Engineering and Processing: Process Intensification, 2017, 117: 27–37. DOI: https://doi.org/10.1016/j.cep.2017.03.013.

    Article  Google Scholar 

  9. MOGHADDASZADEH N, RASHIDI S, ABOLFAZLI ESFAHANI J. Potential of gear-ring turbulator in three-dimensional heat exchanger tube from second law of thermodynamic viewpoint [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 29(4): 1526–1543. DOI: https://doi.org/10.1108/hff-05-2018-0250.

    Article  Google Scholar 

  10. MOGHADAS ZADE N, AKAR S, RASHIDI S, ABOLFAZLI ESFAHANI J. Thermo-hydraulic analysis for a novel eccentric helical screw tape insert in a three dimensional tube [J]. Applied Thermal Engineering, 2017, 124: 413–421. DOI: https://doi.org/10.1016/j.applthermaleng.2017.06.036.

    Article  Google Scholar 

  11. NI Ming-long, CHEN Ya-ping, DONG Cong, WU Jia-feng. Numerical simulation of heat transfer and flow of cooling air in triangular wavy fin channels [J]. Journal of Central South University, 2014, 21(7): 2759–2765. DOI: https://doi.org/10.1007/s11771-014-2238-3.

    Article  Google Scholar 

  12. WANG Wei-han, CHENG Dao-lai, LIU Tao, LIU Ying-hao. Performance comparison for oil-water heat transfer of circumferential overlap trisection helical baffle heat exchanger [J]. Journal of Central South University, 2016, 23(10): 2720–2727. DOI: https://doi.org/10.1007/s11771-016-3333-4.

    Article  Google Scholar 

  13. NEMATI H, RAHIMZADEH A R, WANG Chi-chuan. Heat transfer simulation of annular elliptical fin-and-tube heat exchanger by transition SST model [J]. Journal of Central South University, 2020, 27(8): 2324–2337. DOI: https://doi.org/10.1007/s11771-020-4452-5.

    Article  Google Scholar 

  14. KITAGAWA A, KOSUGE K, UCHIDA K, HAGIWARA Y. Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection [J]. Experiments in Fluids, 2008, 45(3): 473–484. DOI: https://doi.org/10.1007/s00348-008-0490-8.

    Article  Google Scholar 

  15. CELATA G P, CHIARADIA A, CUMO M, D’ANNIBALE F. Heat transfer enhancement by air injection in upward heated mixed-convection flow of water [J]. International Journal of Multiphase Flow, 1999, 25(6, 7): 1033–1052. DOI: https://doi.org/10.1016/S0301-9322(99)00059-2.

    Article  MATH  Google Scholar 

  16. WANG Zhi-qi, HE Ni, XIA Xiao-xia, LIU Li-wen. Experimental investigation on boiling heat transfer and pressure drop of R245fa in a horizontal micro-fin tube [J]. Journal of Central South University, 2019, 26(11): 3200–3212. DOI: https://doi.org/10.1007/s11771-019-4246-9.

    Article  Google Scholar 

  17. CHANG F, DHIR V K. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection [J]. International Journal of Heat and Fluid Flow, 1995, 16(2): 78–87. DOI: https://doi.org/10.1016/0142-727X(94)00016-6.

    Article  Google Scholar 

  18. XU Peng, YU Bo-ming, QIU Shu-xia, POH H J, MUJUMDAR A S. Turbulent impinging jet heat transfer enhancement due to intermittent pulsation [J]. International Journal of Thermal Sciences, 2010, 49(7): 1247–1252. DOI: https://doi.org/10.1016/j.ijthermalsci.2010.01.020.

    Article  Google Scholar 

  19. DEHGHAN M, JAMAL-ABAD M T, RASHIDI S. Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers [J]. Energy Conversion and Management, 2014, 85: 264–271. DOI: https://doi.org/10.1016/j.enconman.2014.05.074.

    Article  Google Scholar 

  20. RASHIDI S, DEHGHAN M, ELLAHI R, RIAZ M, JAMAL-ABAD M T. Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium [J]. Journal of Magnetism and Magnetic Materials, 2015, 378: 128–137. DOI: https://doi.org/10.1016/j.jmmm.2014.11.020.

    Article  Google Scholar 

  21. RASHIDI S, KASHEFI M H, KIM K C, SAMIMI-ABIANEH O. Potentials of porous materials for energy management in heat exchangers–A comprehensive review [J]. Applied Energy, 2019, 243: 206–232. DOI: https://doi.org/10.1016/j.apenergy.2019.03.200.

    Article  Google Scholar 

  22. SHAMSABADI H, RASHIDI S, ESFAHANI J A. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 1009–1019. DOI: https://doi.org/10.1007/s10973-018-7350-4.

    Article  Google Scholar 

  23. ALIZADEH R, GOMARI S R, ALIZADEH A, KARIMI N, LI L K B. Combined heat and mass transfer and thermodynamic irreversibilities in the stagnation-point flow of Casson rheological fluid over a cylinder with catalytic reactions and inside a porous medium under local thermal nonequilibrium [J]. Computers & Mathematics with Applications, 2021, 81: 786–810. DOI: https://doi.org/10.1016/j.camwa.2019.10.021.

    Article  MathSciNet  MATH  Google Scholar 

  24. ELLIOTT A, TORABI M, KARIMI N, CUNNINGHAM S. On the effects of internal heat sources upon forced convection in porous channels with asymmetric thick walls [J]. International Communications in Heat and Mass Transfer, 2016, 73: 100–110. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.02.016.

    Article  Google Scholar 

  25. SIAVASHI M, MIRI JOIBARY S M. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 1595–1610. DOI: https://doi.org/10.1007/s10973-018-7829-z.

    Article  Google Scholar 

  26. POURRAHMANI H, MOGHIMI M, SIAVASHI M, SHIRBANI M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs [J]. Applied Thermal Engineering, 2019, 150: 433–444. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.010.

    Article  Google Scholar 

  27. SIAVASHI M, TALESH BAHRAMI H R, AMINIAN E, SAFFARI H. Numerical analysis on forced convection enhancement in an annulus using porous ribs and nanoparticle addition to base fluid [J]. Journal of Central South University, 2019, 26(5): 1089–1098. DOI: https://doi.org/10.1007/s11771-019-4073-z.

    Article  Google Scholar 

  28. VALIZADEH ARDALAN M, ALIZADEH R, FATTAHI A, ADELIAN RASI N, DORANEHGARD M H, KARIMI N. Analysis of unsteady mixed convection of Cu-water nanofluid in an oscillatory, lid-driven enclosure using lattice Boltzmann method [J]. Journal of Thermal Analysis and Calorimetry, 2021, 145(4): 2045–2061. DOI: https://doi.org/10.1007/s10973-020-09789-3.

    Article  Google Scholar 

  29. MAJID S, MOHAMMAD J. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(8): 1850–1865. DOI: https://doi.org/10.1007/s11771-017-3593-7.

    Article  Google Scholar 

  30. ZABOLI M, AJAROSTAGHI S S M, NOORBAKHSH M, DELAVAR M A. Effects of geometrical and operational parameters on heat transfer and fluid flow of three various water based nanofluids in a shell and coil tube heat exchanger [J]. SN Applied Sciences, 2019, 1(11): 1–17. DOI: https://doi.org/10.1007/s42452-019-1431-2.

    Article  Google Scholar 

  31. AJAROSTAGHI S S M, ZABOLI M, NOURBAKHSH M. Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator [J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(2): 1583–1597. DOI: https://doi.org/10.1007/s10973-020-10205-z.

    Article  Google Scholar 

  32. SHIRZAD M, AJAROSTAGHI S S M, DELAVAR M A, SEDIGHI K. Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: Numerical simulation [J]. Advanced Powder Technology, 2019, 30(7): 1356–1365. DOI: https://doi.org/10.1016/j.apt.2019.04.011.

    Article  Google Scholar 

  33. HAMEDANI F A, AJAROSTAGHI S S M, HOSSEINI S A. Numerical evaluation of the effect of geometrical and operational parameters on thermal performance of nanofluid flow in convergent-divergent tube [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1483–1505. DOI: https://doi.org/10.1007/s10973-019-08765-w.

    Article  Google Scholar 

  34. KAZEMI MOGHADAM H, MOUSAVI AJAROSTAGHI S S, PONCET S. Extensive numerical analysis of the thermal performance of a corrugated tube with coiled wire [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1469–1481. DOI: https://doi.org/10.1007/s10973-019-08876-4.

    Article  Google Scholar 

  35. NOORBAKHSH M, POURFALLAH M, AJAROSTAGHI S S M, ZABOLI M. Numerical evaluation and the effects of geometrical and operational parameters on thermal performance of the shell and double coil tube heat exchanger [J]. Heat Transfer, 2020, 49(8): 4678–4703. DOI: https://doi.org/10.1002/htj.21847.

    Article  Google Scholar 

  36. AFSHARPANAH F, MOUSAVI AJAROSTAGHI S S, SEDIGHI K. The influence of geometrical parameters on the ice formation enhancement in a shell and double coil ice storage system [J]. SN Applied Sciences, 2019, 1(10): 1–14. DOI: https://doi.org/10.1007/s42452-019-1317-3.

    Article  Google Scholar 

  37. PAKZAD K, MOUSAVI AJAROSTAGHI S S, SEDIGHI K. Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes [J]. SN Applied Sciences, 2019, 1(10): 1–12. DOI: https://doi.org/10.1007/s42452-019-1316-4.

    Article  Google Scholar 

  38. JAVADI H, AJAROSTAGHI S S M, MOUSAVI S S, POURFALLAH M. Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression [J]. Geothermics, 2019, 81: 53–73. DOI: https://doi.org/10.1016/j.geothermics.2019.04.005.

    Article  Google Scholar 

  39. JAVADI H, MOUSAVI AJAROSTAGHI S S, POURFALLAH M, ZABOLI M. Performance analysis of helical ground heat exchangers with different configurations [J]. Applied Thermal Engineering, 2019, 154: 24–36. DOI: https://doi.org/10.1016/j.applthermaleng.2019.03.021.

    Article  Google Scholar 

  40. MOUSAVI AJAROSTAGHI S S, PONCET S, SEDIGHI K, AGHAJANI DELAVAR M. Numerical modeling of the melting process in a shell and coil tube ice storage system for air-conditioning application [J]. Applied Sciences, 2019, 9(13): 2726. DOI: https://doi.org/10.3390/app9132726.

    Article  Google Scholar 

  41. MOUSAVI AJAROSTAGHI S S, SEDIGHI K, AGHAJANI DELAVAR M, PONCET S. Numerical study of a horizontal and vertical shell and tube ice storage systems considering three types of tube [J]. Applied Sciences, 2020, 10(3): 1059. DOI: https://doi.org/10.3390/app10031059.

    Article  Google Scholar 

  42. MAHENDRAN J. Experimental analysis of shell and tube heat exchanger using flower baffle plate configuration [J]. Materials Today: Proceedings, 2020, 21: 419–424. DOI: https://doi.org/10.1016/j.matpr.2019.06.380.

    Google Scholar 

  43. AKYÜREK E F, GELIŞ K, ŞAHIN B, MANAY E. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger [J]. Results in Physics, 2018, 9: 376–389. DOI: https://doi.org/10.1016/j.rinp.2018.02.067.

    Article  Google Scholar 

  44. SHINDE S, CHAVAN U. Numerical and experimental analysis on shell side thermo-hydraulic performance of shell and tube heat exchanger with continuous helical FRP baffles [J]. Thermal Science and Engineering Progress, 2018, 5: 158–171. DOI: https://doi.org/10.1016/j.tsep.2017.11.006.

    Article  Google Scholar 

  45. LI Nian-qi, CHEN Jian, CHENG Tao, KLEMES J J, VARBANOV P S, WANG Qiu-wang, YANG Wei-sheng, LIU Xia, ZENG Min. Analysing thermal-hydraulic performance and energy efficiency of shell-and-tube heat exchangers with longitudinal flow based on experiment and numerical simulation [J]. Energy, 2020, 202: 117757. DOI: https://doi.org/10.1016/j.energy.2020.117757.

    Article  Google Scholar 

  46. McCONALOGUE D J, SRLVASTAVA R S. Motion of a fluid in a curved tube [J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1968, 307(1488): 37–53. DOI: https://doi.org/10.1098/rspa.1968.0173.

    Google Scholar 

  47. OLFIAN H, AJAROSTAGHI S S M, FARHADI M, RAMIAR A. Melting and solidification processes of phase change material in evacuated tube solar collector with U-shaped spirally corrugated tube [J]. Applied Thermal Engineering, 2021, 182: 116149. DOI: https://doi.org/10.1016/j.applthermaleng.2020.116149.

    Article  Google Scholar 

  48. WANG Wei, ZHANG Ya-ning, LI Bing-xi, HAN Huai-zhi, GAO Xiao-yan. Influence of geometrical parameters on turbulent flow and heat transfer characteristics in outward helically corrugated tubes [J]. Energy Conversion and Management, 2017, 136: 294–306. DOI: https://doi.org/10.1016/j.enconman.2017.01.029.

    Article  Google Scholar 

  49. STEENBERGEN W, VOSKAMP J. The rate of decay of swirl in turbulent pipe flow [J]. Flow Measurement and Instrumentation, 1998, 9(2): 67–78. DOI: https://doi.org/10.1016/S0955-5986(98)00016-8.

    Article  Google Scholar 

  50. SADIGHI DIZAJI H, JAFARMADAR S, MOBADERSANI F. Experimental studies on heat transfer and pressure drop characteristics for new arrangements of corrugated tubes in a double pipe heat exchanger [J]. International Journal of Thermal Sciences, 2015, 96: 211–220. DOI: https://doi.org/10.1016/j.ijthermalsci.2015.05.009.

    Article  Google Scholar 

  51. ZACHAR A. Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall [J]. International Journal of Heat and Mass Transfer, 2010, 53(19, 20): 3928–3939. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.011.

    Article  MATH  Google Scholar 

  52. RAINIERI S, BOZZOLI F, CATTANI L, PAGLIARINI G. Compound convective heat transfer enhancement in helically coiled wall corrugated tubes [J]. International Journal of Heat and Mass Transfer, 2013, 59: 353–362. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.037.

    Article  Google Scholar 

  53. YARMOHAMMADI S, FARHADI M. Optimization of thermal and flow characteristics of R-404A vapor condensation inside corrugated tubes [J]. Experimental Thermal and Fluid Science, 2016, 79: 1–12. DOI: https://doi.org/10.1016/j.expthermflusci.2016.06.012.

    Article  Google Scholar 

  54. JAFARI M, DABIRI S, FARHADI M, SEDIGHI K. Effects of a three-lobe swirl generator on the thermal and flow fields in a heat exchanging tube: An experimental and numerical approach [J]. Energy Conversion and Management, 2017, 148: 1358–1371. DOI: https://doi.org/10.1016/j.enconman.2017.06.074.

    Article  Google Scholar 

  55. BEJAN A. Convection heat transfer [M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. DOI: https://doi.org/10.1002/9781118671627.

    Book  Google Scholar 

  56. BARAGH S, SHOKOUHMAND H, AJAROSTAGHI S S M, NIKIAN M. An experimental investigation on forced convection heat transfer of single-phase flow in a channel with different arrangements of porous media [J]. International Journal of Thermal Sciences, 2018, 134: 370–379. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.04.030.

    Article  Google Scholar 

  57. BARAGH S, SHOKOUHMAND H, AJAROSTAGHI S S M. Experiments on mist flow and heat transfer in a tube fitted with porous media [J]. International Journal of Thermal Sciences, 2019, 137: 388–398. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.11.030.

    Article  Google Scholar 

  58. HASHEMI KAROUEI S H, MOUSAVI AJAROSTAGHI S S. Influence of a curved conical turbulator on heat transfer augmentation in a helical double-pipe heat exchanger [J]. Heat Transfer, 2021, 50(2): 1872–1894. DOI: https://doi.org/10.1002/htj.21960.

    Article  Google Scholar 

  59. NOORBAKHSH M, AJAROSTAGHI S S M, ZABOLI M, KIANI B. Thermal analysis of nanofluids flow in a double pipe heat exchanger with twisted tapes insert in both sides [J]. Journal of Thermal Analysis and Calorimetry, 2021: 1–12. DOI: https://doi.org/10.1007/s10973-021-10738-x.

  60. SAFFARIAN M R, MORAVEJ M, DORANEHGARD M H. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid [J]. Renewable Energy, 2020, 146: 2316–2329. DOI: https://doi.org/10.1016/j.renene.2019.08.081.

    Article  Google Scholar 

  61. BOZORG M V, HOSSEIN DORANEHGARD M, HONG Kun, XIONG Qin-gang. CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil-Al2O3 nanofluid [J]. Renewable Energy, 2020, 145: 2598–2614. DOI: https://doi.org/10.1016/j.renene.2019.08.042.

    Article  Google Scholar 

  62. SIAVASHI M, KARIMI K, XIONG Qin-gang, DORANEHGARD M H. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder [J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(1): 267–287. DOI: https://doi.org/10.1007/s10973-018-7945-9.

    Article  Google Scholar 

  63. ALIZADEH R, ABAD J M N, FATTAHI A, MOHEBBI M R, DORANEHGARD M H, LI L K B, ALHAJRI E, KARIMI N. A machine learning approach to predicting the heat convection and thermodynamics of an external flow of hybrid nanofluid [J]. Journal of Energy Resources Technology, 2021, 143(7): 070908. DOI: https://doi.org/10.1115/1.4049454.

    Article  Google Scholar 

  64. SAEDODIN S, ZABOLI M, MOUSAVI AJAROSTAGHI S S. Hydrothermal analysis of heat transfer and thermal performance characteristics in a parabolic trough solar collector with Turbulence-Inducing elements [J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101266. DOI: https://doi.org/10.1016/j.seta.2021.101266.

    Article  Google Scholar 

  65. ABBASPOUR M, MOUSAVI AJAROSTAGHI S S, HEJAZI RAD S A H, NIMAFAR M. Heat transfer improvement in a tube by inserting perforated conical ring and wire coil as turbulators [J]. Heat Transfer, 2021, 50(6): 6164–6188. DOI: https://doi.org/10.1002/htj.22167.

    Article  Google Scholar 

  66. ZABOLI M, SAEDODIN S, MOUSAVI AJAROSTAGHI S S, NOURBAKHSH M. Numerical evaluation of the heat transfer in a shell and corrugated coil tube heat exchanger with three various water-based nanofluids [J]. Heat Transfer, 2021, 50(6): 6043–6067. DOI: https://doi.org/10.1002/htj.22161.

    Article  Google Scholar 

  67. SCHMIDT E F. Heat transfer and pressure loss in spiral tubes [J]. Chemie Ingenieur Technik, 1967, 39(13): 781–789. DOI: https://doi.org/10.1002/cite.330391302.

    Article  Google Scholar 

  68. HIROMASA I. Friction factors for turbulent flow in curved pipes [J]. Transactions of American Society of Mechanical Engineers, Journal of Basic Engineering, 1959, 81: 123–132. https://doi.org/10.1115/1.4008390.

    Google Scholar 

  69. LIM K Y, HUNG Y M, TAN B T. Performance evaluation of twisted-tape insert induced swirl flow in a laminar thermally developing heat exchanger [J]. Applied Thermal Engineering, 2017, 121: 652–661. DOI: https://doi.org/10.1016/j.applthermaleng.2017.04.134.

    Article  Google Scholar 

  70. ZHENG Nian-ben, LIU Peng, SHAN Feng, LIU Jia-ju, LIU Zhi-chun, LIU Wei. Numerical studies on thermo-hydraulic characteristics of laminar flow in a heat exchanger tube fitted with vortex rods [J]. International Journal of Thermal Sciences, 2016, 100: 448–456. DOI: https://doi.org/10.1016/j.ijthermalsci.2015.09.008.

    Article  Google Scholar 

  71. GUO Jian, FAN Ai-wu, ZHANG Xiao-yu, LIU Wei. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape [J]. International Journal of Thermal Sciences, 2011, 50(7): 1263–1270. DOI: https://doi.org/10.1016/j.ijthermalsci.2011.02.010.

    Article  Google Scholar 

  72. SAINI R, KARIMI N, DUAN Lian, SADIKI A, MEHDIZADEH A. Effects of near wall modeling in the improved-delayed-detached-eddy-simulation (IDDES) methodology [J]. Entropy, 2018, 20(10): 771. DOI: https://doi.org/10.3390/e20100771.

    Article  Google Scholar 

  73. AKIYAMA M, CHENG K C. Laminar forced convection heat transfer in curved pipes with uniform wall temperature [J]. International Journal of Heat and Mass Transfer, 1972, 15(7): 1426–1431. DOI: https://doi.org/10.1016/0017-9310(72)90023-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by Seyed Hossein HASHEMI KAROUEI and Seyed Soheil MOUSAVI AJAROSTAGHI. Also, they performed the numerical simulations and analyzed the obtained results. The initial draft of the manuscript was written by Seyed Hossein HASHEMI KAROUEI, Seyed Soheil MOUSAVI AJAROSTAGHI, and Saman RASHIDI. The initial draft of the manuscript was edited by Elham HOSSEINIRAD. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Seyed Soheil Mousavi Ajarostaghi.

Additional information

Conflict of interest

Seyed Hossein HASHEMI KAROUEI, Seyed Soheil MOUSAVI AJAROSTAGHI, Saman RASHIDI, and Elham HOSSEINIRAD declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi Karouei, S.H., Mousavi Ajarostaghi, S.S., Rashidi, S. et al. An advanced turbulator with blades and semi-conical section for heat transfer improvement in a helical double tube heat exchanger. J. Cent. South Univ. 28, 3491–3506 (2021). https://doi.org/10.1007/s11771-021-4870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4870-z

Key words

关键词

Navigation