Skip to main content
Log in

Effects of rib on cooling performance of photovoltaic modules (PV/PCM-Rib)

肋材对(PV/PCM-Rib)光伏组件冷却性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Increasing the temperature of photovoltaic systems reduces electrical efficiency, output power, as well as results in permanent damages in the long-term run. A new hybrid PV/PCM-Rib system with three different rib pitch ratios of Λ =4, Λ =2 and Λ =1 is investigated to reduce PV temperature and achieve uniform temperature distribution. A comprehensive two-dimensional model of the systems is developed and simulated with a fixed inclination angle of 30°. A parametric study is carried out to investigate the impact of ribs on different melting temperatures (50, 40 and 30 ° C). According to the numerical results and the parametric analysis, using ribs shows better performance in temperature reduction for PCM with a lower melting temperature. By lowering the melting temperature of PCM from 50 to 30 °C, the average temperature reduction of PV/PCM-Rib in the case of Λ =1 increases from 1.39% to 5.16% while the average melted PCM decreases from 20.5% to 7.59% after 240 min. It means that using ribs provides more solid PCM. It is also obtained that the electrical efficiency and output power show more increments at lower melting temperatures.

摘要

升高光伏系统的温度会降低电力效率和输出功率, 并在长期运行中造成永久性的损害。研究了 采用Λ=4,Λ=2, Λ=1 三种不同肋距比的PV/PCM-Rib 复合系统, 以降低PV 温度, 实现温度均匀分布。 建立了系统的综合二维模型, 并对固定倾角为30°的情况进行了仿真。通过参数研究, 研究了肋材在 不同PCM 熔化温度(50 °C、40 °C 和30 °C)对降温效果的影响。计算结果和参数分析表明, 在熔化温度 较低的PCM 材料中, 采用肋材具有较好的降温效果。通过将PCM 的熔化温度由50 °C 降至30 °C,在 Λ=1 情况下, 240 min 后PV/PCM-Rib 的平均温度下降率由1.39% 提高至5.16%, PCM 的平均熔化率由 20.5% 降低至7.59%。这意味着使用肋材可以提供更多固态PCM。在较低的PCM 熔点温度下, 电效率 和输出功率增加较多。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Absorption coefficient (m−1)

A mush :

Mushy zone constant (kg/(m3·s))

C p :

Specific heat capacity (J/(kg·K))

F b :

Buoyance force (N)

g :

Gravitational acceleration (m/s2)

h :

Height of ribs (mm)

h 1 :

Sensible enthalpy (J/kg)

h conv :

Convection heat transfer coeffcient (W/(m2·K))

H :

Enthalpy of PCM (J/kg)

I T :

Incident solar radiation (W/m2)

k :

Thermal conductivity (W/(m·K))

l :

Distance between ribs (mm)

L :

Length of solar panel (mm)

L 1 :

Latent heat (J/kg)

n :

Reflective index

P :

Pressure (Pa)

P out :

Output power per width (W/m)

q :

Heat flux per area (W/m2)

\({\vec r}\) :

Position vector

\({\vec s}\) :

Direction vector

\({{\vec s}^\prime }\) :

Scattering direction vector

S :

Source term

t :

Time (s)

T :

Local temperature (°C)

T m :

Melting temperature (°C)

ΔT m :

Phase transition range (°C)

u, v :

Velocity components in x and y-direction (m/s)

V wind :

Wind velocity (m/s)

α :

Absorptivity of the solar cell

β :

Thermal expansion coefficient (K−1)

β ref :

Solar cell temperature coefficient (K−1)

γ :

Liquid fraction

Δ :

Difference

ε :

Emissive factor

ζ :

Solar irradiance coefficient

η :

Efficiency

θ :

Inclination angle

Λ :

Rib pitch ratio

μ :

Viscosity (Pa·s)

ρ :

Density (kg/m3)

σ :

Stefan-boltzmann constant (W/(m2·K4))

σ s :

Scattering coefficient

τ :

Transmissivity of glass cover

Φ :

Phase function

Ω′ :

Solid angle

ARC:

Antireflective coating

DO:

Discrete ordinate

EVA:

Ethylene-vinyl acetate

PCM:

Phase change material

PV:

Photovoltaic

RTE:

Radiative transfer equation

STC:

Standard test condition

TWh:

Tetra watt-hour

amb:

Ambient

Al:

Aluminum

B-S:

Back surface

conv:

Convection

conv — B:

Convection back surface

conv — F:

Convection front surface

Eff:

Effective

F-S:

Front surface

1:

Liquid

out:

Output power

pv:

Photovoltaic

ref:

Reference

rad — B:

Radiation back surface

rad — F:

Radiation front surface

s:

Solid

References

  1. International Energy Agency. Solar PV power generation in the sustainable development scenario, 2000–2030 [EB/OL]. [2020-06-02]. https://www.iea.org/data-and-statistics/charts/solar-pv-power-generation-in-the-sustainable-development-scenario-2000-2030.

  2. ROYNE A, DEY C J, MILLS D R. Cooling of photovoltaic cells under concentrated illumination: A critical review [J]. Solar Energy Materials and Solar Cells, 2005, 86(4): 451–483. DOI: https://doi.org/10.1016/j.solmat.2004.09.003.

    Article  Google Scholar 

  3. RADZIEMSKA E. The effect of temperature on the power drop in crystalline silicon solar cells [J]. Renewable Energy, 2003, 28(1): 1–12. DOI: https://doi.org/10.1016/S0960-1481(02)00015-0.

    Article  Google Scholar 

  4. NIŽETIĆ S, PAPADOPOULOS A M, GIAMA E. Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques [J]. Energy Conversion and Management, 2017, 149: 334–354. DOI: https://doi.org/10.1016/j.enconman.2017.07.022.

    Article  Google Scholar 

  5. KHORRAMI N, RAJABI ZARGARABADI M, DEHGHAN M. A novel spectrally selective radiation shield for cooling a photovoltaic module [J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101269. DOI: https://doi.org/10.1016/j.seta.2021.101269.

    Article  Google Scholar 

  6. DONG Jun, ZHUANG Xiao-ru, XU Xin-hai, MIAO Zhihuai, XU Ben. Numerical analysis of a multi-channel active cooling system for densely packed concentrating photovoltaic cells [J]. Energy Conversion and Management, 2018, 161: 172–181. DOI: https://doi.org/10.1016/j.enconman.2018.01.081.

    Article  Google Scholar 

  7. HADIPOUR A, RAJABI ZARGARABADI M, RASHIDI S. An efficient pulsed-spray water cooling system for photovoltaic panels: Experimental study and cost analysis [J]. Renewable Energy, 2021, 164: 867–875. DOI: https://doi.org/10.1016/j.renene.2020.09.021.

    Article  Google Scholar 

  8. SOARES N, COSTA J J, GASPAR A R, SANTOS P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency [J]. Energy and Buildings, 2013, 59: 82–103. DOI: https://doi.org/10.1016/j.enbuild.2012.12.042.

    Article  Google Scholar 

  9. HÄUSLER T, ROGAß H. Photovoltaic module with latent heat-storage-collector. [C]// World Conference on Photovoltaic Solar Energy Conversion. Vienna, Austria: Office for Official Publication of the European Communities. 1998.

    Google Scholar 

  10. HUANG M J, EAMES P C, NORTON B. Thermal regulation of building-integrated photovoltaics using phase change materials [J]. International Journal of Heat and Mass Transfer, 2004, 47(12, 13): 2715–2733. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.015.

    Article  Google Scholar 

  11. HUANG M J, EAMES P C, NORTON B. Phase change materials for limiting temperature rise in building integrated photovoltaics [J]. Solar Energy, 2006, 80(9): 1121–1130. DOI: https://doi.org/10.1016/j.solener.2005.10.006.

    Article  Google Scholar 

  12. HASAN A, MCCORMACK S J, HUANG M J, NORTON B. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics [J]. Solar Energy, 2010, 84(9): 1601–1612. DOI: https://doi.org/10.1016/j.solener.2010.06.010.

    Article  Google Scholar 

  13. HO C J, TANUWIJAVA A O, LAI Chi-ming. Thermal and electrical performance of a BIPV integrated with a microencapsulated phase change material layer [J]. Energy and Buildings, 2012, 50: 331–338. DOI: https://doi.org/10.1016/j.enbuild.2012.04.003.

    Article  Google Scholar 

  14. INDARTONO Y S, SUWONO A, PRATAMA F Y. Improving photovoltaics performance by using yellow petroleum jelly as phase change material [J]. International Journal of Low-Carbon Technologies, 2016, 11(3): 333–337. DOI: https://doi.org/10.1093/ijlct/ctu033.

    Article  Google Scholar 

  15. SMITH C J, FORSTER P M, CROOK R. Global analysis of photovoltaic energy output enhanced by phase change material cooling [J]. Applied Energy, 2014, 126: 21–28. DOI: https://doi.org/10.1016/j.apenergy.2014.03.083.

    Article  Google Scholar 

  16. HASAN A, MCCORMACK S J, HUANG M J, SARWAR J, NORTON B. Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates [J]. Solar Energy, 2015, 115: 264–276. DOI: https://doi.org/10.1016/j.solener.2015.02.003.

    Article  Google Scholar 

  17. STROPNIK R, STRITIH U. Increasing the efficiency of PV panel with the use of PCM [J]. Renewable Energy, 2016, 97: 671–679. DOI: https://doi.org/10.1016/j.renene.2016.06.011.

    Article  Google Scholar 

  18. MAHAMUDUL H, RAHMAN M M, METSELAAR H S C, MEKHILEF S, SHEZAN S A, SOHEL R, ABU KARIM S B, BADIUZAMAN W N I. Temperature regulation of photovoltaic module using phase change material: A numerical analysis and experimental investigation [J]. International Journal of Photoenergy, 2016, 2016: 1–8. DOI: https://doi.org/10.1155/2016/5917028.

    Article  Google Scholar 

  19. HACHEM F, ABDULHAY B, RAMADAN M, EL HAGE H, EL RAB M G, KHALED M. Improving the performance of photovoltaic cells using pure and combined phase change materials — Experiments and transient energy balance [J]. Renewable Energy, 2017, 107: 567–575. DOI: https://doi.org/10.1016/j.renene.2017.02.032.

    Article  Google Scholar 

  20. PARK J, KIM T, LEIGH S B. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions [J]. Solar Energy, 2014, 105: 561–574. DOI: https://doi.org/10.1016/j.solener.2014.04.020.

    Article  Google Scholar 

  21. KHANNA S, REDDY K S, MALLICK T K. Climatic behaviour of solar photovoltaic integrated with phase change material [J]. Energy Conversion and Management, 2018, 166: 590–601. DOI: https://doi.org/10.1016/j.enconman.2018.04.056.

    Article  Google Scholar 

  22. WAQAS A, JI Jie, BAHADAR A, XU Li-jie, ZESHA N, MODJINOU M. Thermal management of conventional photovoltaic module using phase change materials—An experimental investigation [J]. Energy Exploration & Exploitation, 2019, 37(5): 1516–1540. DOI: https://doi.org/10.1177/0144598718795697.

    Article  Google Scholar 

  23. RAJVIKRAM M, LEOPONRAJ S, RAMKUMAR S, AKSHAYA H, DHEERAJ A. Experimental investigation on the abasement of operating temperature in solar photovoltaic panel using PCM and aluminium [J]. Solar Energy, 2019, 188: 327–338. DOI: https://doi.org/10.1016/j.solener.2019.05.067.

    Article  Google Scholar 

  24. KARTHICK A, RAMANAN P, GHOSH A, STALIN B, VIGNESH KUMAR R, BARANILINGESAN I. Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material [J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(5): e2480. DOI: https://doi.org/10.1002/apj.2480.

    Article  Google Scholar 

  25. ABDULMUNEM A R, MOHD SAMIN P, ABDUL RAHMAN H, HUSSIEN H A, IZMI MAZALI I, GHAZALI H. Numerical and experimental analysis of the tilt angle’s effects on the characteristics of the melting process of PCM-based as PV cell’s backside heat sink [J]. Renewable Energy, 2021, 173: 520–530. DOI: https://doi.org/10.1016/j.renene.2021.04.014.

    Article  Google Scholar 

  26. SAVVAKIS N, DIALYNA E, TSOUTSOS T. Investigation of the operational performance and efficiency of an alternative PV + PCM concept [J]. Solar Energy, 2020, 211: 1283–1300. DOI: https://doi.org/10.1016/j.solener.2020.10.053.

    Article  Google Scholar 

  27. SENTHIL KUMAR K, ASHWIN KUMAR H, GOWTHAM P, HARI SELVA KUMAR S, HARI SUDHAN R. Experimental analysis and increasing the energy efficiency of PV cell with nano-PCM (calcium carbonate, silicon carbide, copper) [J]. Materials Today: Proceedings, 2021, 37: 1221–1225. DOI: https://doi.org/10.1016/j.matpr.2020.06.430.

    Google Scholar 

  28. HEYHAT M M, MOUSAVI S, SIAVASHI M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle [J]. Journal of Energy Storage, 2020, 28: 101235. DOI: https://doi.org/10.1016/j.est.2020.101235.

    Article  Google Scholar 

  29. MOUSAVI S, SIAVASHI M, HEYHAT M M. Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins [J]. Numerical Heat Transfer, Part A: Applications, 2019, 75(8): 560–577. DOI: https://doi.org/10.1080/10407782.2019.1606634.

    Article  Google Scholar 

  30. MAHDI J M, MOHAMMED H I, HASHIM E T, TALEBIZADEHSARDARI P, NSOFOR E C. Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system [J]. Applied Energy, 2020, 257: 113993. DOI: https://doi.org/10.1016/j.apenergy.2019.113993.

    Article  Google Scholar 

  31. WANG Long-fei, WANG Song-tao, WEN Feng-bo, ZHOU Xun, WANG Zhong-qi. Effects of continuous wavy ribs on heat transfer and cooling air flow in a square single-pass channel of turbine blade [J]. International Journal of Heat and Mass Transfer, 2018, 121: 514–533. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.004.

    Article  Google Scholar 

  32. WU P S, CHANG S, CHEN Chuan-sheng, WENG C C, JIANG Yu-ru, SHIH S H. Numerical flow and experimental heat transfer of S-shaped two-pass square channel with cooling applications to gas turbine blade [J]. International Journal of Heat and Mass Transfer, 2017, 108: 362–373. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.107.

    Article  Google Scholar 

  33. GOMAA A, HALIM M A, ELSAID A M. Enhancement of cooling characteristics and optimization of a triple concentric-tube heat exchanger with inserted ribs [J]. International Journal of Thermal Sciences, 2017, 120: 106–120. DOI: https://doi.org/10.1016/j.ijthermalsci.2017.06.002.

    Article  Google Scholar 

  34. ZHENG Nian-ben, LIU Peng, SHAN Feng, LIU Zhi-chun, LIU Wei. Effects of rib arrangements on the flow pattern and heat transfer in an internally ribbed heat exchanger tube [J]. International Journal of Thermal Sciences, 2016, 101: 93–105. DOI: https://doi.org/10.1016/j.ijthermalsci.2015.10.035.

    Article  Google Scholar 

  35. GHANI I A, KAMARUZAMAN N, SIDIK N A C. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs [J]. International Journal of Heat and Mass Transfer, 2017, 108: 1969–1981. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.046.

    Article  Google Scholar 

  36. HUANG K T, LIU Y H. Enhancement of mist flow cooling by using V-shaped broken ribs [J]. Energies, 2019, 12(19): 3785. DOI: https://doi.org/10.3390/en12193785.

    Article  Google Scholar 

  37. HOWELL J R, MENGUC M P, SIEGEL R. Thermal radiation heat transfer [M]. New York: CRC Press, 2015. DOI: https://doi.org/10.1201/b18835.

    Book  Google Scholar 

  38. KHANNA S, REDDY K S, MALLICK T K. Optimization of finned solar photovoltaic phase change material (finned PV PCM) system [J]. International Journal of Thermal Sciences, 2018, 130: 313–322. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.04.033.

    Article  Google Scholar 

  39. SAKELLARIOU E, AXAOPOULOS P. An experimentally validated, transient model for sheet and tube PVT collector [J]. Solar Energy, 2018, 174: 709–718. DOI: https://doi.org/10.1016/j.solener.2018.09.058.

    Article  Google Scholar 

  40. VOGT M R. Development of physical models for the simulation of optical properties of solar cell modules [D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2015.

    Google Scholar 

  41. NADA S A, EL-NAGAR D H, HUSSEIN H M S. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles [J]. Energy Conversion and Management, 2018, 166: 735–743. DOI: https://doi.org/10.1016/j.enconman.2018.04.035.

    Article  Google Scholar 

  42. SHUKLA P K, KISHAN P A. CFD analysis of latent heat energy storage system with different geometric configurations and flow conditions [C]// Proceeding of Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019). IIT Roorkee, India: Begellhouse, 2019. DOI: https://doi.org/10.1615/ihmtc-2019.420.

    Google Scholar 

  43. KANT K, SHUKLA A, SHARMA A, BIWOLE P H. Heat transfer studies of photovoltaic panel coupled with phase change material [J]. Solar Energy, 2016, 140: 151–161. DOI: https://doi.org/10.1016/j.solener.2016.11.006.

    Article  Google Scholar 

  44. BRENT A D, VOLLER V R, REID K J. Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal [J]. Numerical Heat Transfer, 1988, 13(3): 297–318. DOI: https://doi.org/10.1080/10407788808913615.

    Article  Google Scholar 

  45. VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems [J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709–1719. DOI: https://doi.org/10.1016/0017-9310(87)90317-6.

    Article  Google Scholar 

  46. ANSYS. Fluent User’s Guide [M]. ANSYS, Inc. 2021.

  47. KAZEMIAN A, SALARI A, HAKKAKI-FARD A, MA Tao. Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material [J]. Applied Energy, 2019, 238: 734–746. DOI: https://doi.org/10.1016/j.apenergy.2019.01.103.

    Article  Google Scholar 

  48. KAPLANI E, KAPLANIS S. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination [J]. Solar Energy, 2014, 107: 443–460. DOI: https://doi.org/10.1016/j.solener.2014.05.037.

    Article  Google Scholar 

  49. ZARMA I, AHMED M, OOKAWARA S. Enhancing the performance of concentrator photovoltaic systems using nanoparticle-phase change material heat sinks [J]. Energy Conversion and Management, 2019, 179: 229–242. DOI: https://doi.org/10.1016/j.enconman.2018.10.055.

    Article  Google Scholar 

  50. ABDOLZADEH M, ZAREI T. Optical and thermal modeling of a photovoltaic module and experimental evaluation of the modeling performance [J]. Environmental Progress & Sustainable Energy, 2017, 36(1): 277–293. DOI: https://doi.org/10.1002/ep.12493.

    Article  Google Scholar 

  51. ADAMS W H M. Heat transmission [M]. 3rd ed. New York: Hill McGraw, 1954.

    Google Scholar 

  52. SWINBANK W C. Long-wave radiation from clear skies [J]. Quarterly Journal of the Royal Meteorological Society, 1963, 89(381): 339–348. DOI: https://doi.org/10.1002/qj.49708938105.

    Article  Google Scholar 

  53. ZONDAG H A, de VRIES D W, VAN HELDEN W G J, van ZOLINGEN R J C, van STEENHOVEN A A. The yield of different combined PV-thermal collector designs [J]. Solar Energy, 2003, 74(3): 253–269. DOI: https://doi.org/10.1016/S0038-092X(03)00121-X.

    Article  Google Scholar 

  54. ANSYS. Solver theory guide [M]. Ansys Inc, 2013.

  55. MAADI S R, KHATIBI M, EBRAHIMNIA-BAJESTAN E, WOOD D. Coupled thermal-optical numerical modeling of PV/T module-Combining CFD approach and two-band radiation DO model [J]. Energy Conversion and Management, 2019, 198: 111781. DOI: https://doi.org/10.1016/j.enconman.2019.111781.

    Article  Google Scholar 

  56. KLINE S J, MCCLINTOCK F A. Describing uncertainties in single-sample experiments [J]. Mech Eng, 1953(1): 3–8.

  57. ELAMAIREH A, GORANIYA J, COMBRINCK M L. Computational investigating the combination of finned heat sink and phase change material as a cooling technology for a solar panel to be applied in arid areas [J]. International Journal of Energy and Environment, 2019, 10(5): 237- 256. http://ijee.ieefoundation.org/vol10/issue5/IJEE_01_v10n5.pdf.

    Google Scholar 

  58. RABIE R, EMAM M, OOKAWARA S, AHMED M. Thermal management of concentrator photovoltaic systems using new configurations of phase change material heat sinks [J]. Solar Energy, 2019, 183: 632–652. DOI: https://doi.org/10.1016/j.solener.2019.03.061.

    Article  Google Scholar 

Download references

Funding

Foundation item: Project(G13971192) supported by the Semnan University Office of Vice President for Research and Technology; Project supported by Niroo Research Institute (NRI)

Author information

Authors and Affiliations

Authors

Contributions

Mehran Rajabi ZARGARABADI provided the concept and edited the draft of manuscript. Amir SADEGHIAN conducted the literature review and wrote the first draft of the manuscript. Amir SADEGHIAN performed the numerical simulations and analyzed the experimental results. Mehran Rajabi ZARGARABADI and Maziar DEHGHAN edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Mehran Rajabi Zargarabadi.

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghian, A., Zargarabadi, M.R. & Dehghan, M. Effects of rib on cooling performance of photovoltaic modules (PV/PCM-Rib). J. Cent. South Univ. 28, 3449–3465 (2021). https://doi.org/10.1007/s11771-021-4867-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4867-7

Key words

关键词

Navigation