Skip to main content
Log in

Heat transfer enhancement of finned shell and tube heat exchanger using Fe2O3/water nanofluid

采用Fe2O3/水纳米流体强化翅片管壳换热器的传热

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses. Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers. In this numerical study, a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer. Fe2O3/water nanofluids with volume concentration of 1%, 1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water. ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem. Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger. Also, increasing the ratio of Fe2O3 nanoparticles caused more increment in thermal energy without important pressure drop. Moreover, it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe2O3/water with volume fraction of 2%.

摘要

为了优化效率和减少能量损失,需要对传热机理及热性能进行全面研究。在基液中加入不同的纳米颗粒可提高热交换器的热性能。设计了一种翅片管壳式换热器,以体积浓度分别为1%、1.5%、2% 的Fe2O3/水纳米流体作为换热流体,研究不同体积浓度的纳米流体对传热的影响,并将所得结果与纯水作为换热流体结果进行比较。采用ANSYS Fluent 软件对传热过程进行数值模拟。数值模拟结果表明:纳米流体可成功应用于换热器中,提高Fe2O3纳米颗粒的体积分数可以获得更大的热能,而不会产生明显的压降。此外,当纳米流体中Fe2O3的体积分数为2% 时,其传热速率提高率最高,为19.1%

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

c p :

Specific heat capacity of air (kJ/(kg·K))

D :

Hydraulic diameter (m)

k :

Thermal conductivity (W/(m·K))

L :

Length (m)

:

Mass flow rate (kg/s)

Nu :

Nusselt number

\({\dot Q}\) :

Heat flow rate (W)

Re :

Reynolds number

T :

Temperature (K)

V :

Velocity (m/s)

\({\vec v}\) :

Overall velocity vector (m/s)

h :

Heat transfer coefficient (W/(m2·K))

P :

Pressure (Pa)

E :

Error rate (%)

μ :

Dynamic viscosity (Pa·s)

ρ :

Density of air (kg/m3)

ϕ :

Volume fraction

ε :

Turbulent dissipation rate (m2/s3)

ω :

Specific dissipation rate (s−1)

w:

Water

h:

Hot

c:

Cold

in:

Inlet

out:

Outlet

bf:

Base fluid

nf:

Nanofluid

p:

Particle

References

  1. SIAVASHI M, TALESH BAHRAMI H R, AMINIAN E. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams [J]. Applied Thermal Engineering, 2018, 138: 465–474. DOI: https://doi.org/10.1016/j.applthermaleng.2018.04.066.

    Article  Google Scholar 

  2. ÇIFTÇI E. Distilled water-based AlN+ZnO binary hybrid nanofluid utilization in a heat pipe and investigation of its effects on performance [J]. International Journal of Thermophysics, 2021, 42(3): 1–21. DOI: https://doi.org/10.1007/s10765-021-02792-2.

    Article  Google Scholar 

  3. ÇIFTÇI E. Simulation of nucleate pool boiling heat transfer characteristics of the aqueous Kaolin and bauxite nanofluids [J]. Heat Transfer Research, 2021, 52(1): 77–92. DOI: https://doi.org/10.1615/heattransres.2020035191.

    Article  Google Scholar 

  4. SHAHSAVAR A, TALEBIZADEH SARDARI P, TOGHRAIE D. Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 29(3): 915–934. DOI: https://doi.org/10.1108/hff-08-2018-0424.

    Article  Google Scholar 

  5. SELIMEFENDIGIL F, ÖZTOP H F. Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications [J]. Renewable Energy, 2020, 162: 1076–1086. DOI: https://doi.org/10.1016/j.renene.2020.07.071.

    Article  Google Scholar 

  6. SHAHSAVAR A, JAFARI M, SELIMEFENDIGIL F. Two-phase mixture modeling of turbulent forced convective flow of water-silver nanofluid inside a rifled tube: Hydrothermal characteristics and irreversibility behavior [J]. Journal of Thermal Analysis and Calorimetry, 2020: 1–13. DOI: https://doi.org/10.1007/s10973-020-10303-y.

  7. MAJID S, MOHAMMAD J. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(8): 1850–1865. DOI: https://doi.org/10.1007/s11771-017-3593-7.

    Article  Google Scholar 

  8. PINTO R V, FIORELLI F A S. Analysis of behaviour of computational model to evaluate performance of heat pipe containing nanofluids [J]. Journal of Central South University, 2019, 26(5): 1306–1326. DOI: https://doi.org/10.1007/s11771-019-4089-4.

    Article  Google Scholar 

  9. MASHAYEKHI R, KHODABANDEH E, BAHIRAEI M, BAHRAMI L, TOGHRAIE D, AKBARI O A. Application of a novel conical strip insert to improve the efficacy of water-Ag nanofluid for utilization in thermal systems: A two-phase simulation [J]. Energy Conversion and Management, 2017, 151: 573–586. DOI: https://doi.org/10.1016/j.enconman.2017.09.025.

    Article  Google Scholar 

  10. SÖZEN A, GÜRÜ M, MENLIK T, KARAKAYA U, ÇIFTÇI E. Experimental comparison of Triton X-100 and sodium dodecyl benzene sulfonate surfactants on thermal performance of TiO2-deionized water nanofluid in a thermosiphon [J]. Experimental Heat Transfer, 2018, 31(5): 450–469. DOI: https://doi.org/10.1080/08916152.2018.1445673.

    Article  Google Scholar 

  11. BADALI Y, KOÇYIğIT S, AYTIMUR A, ALTINDAL Ş, USLU İ. Synthesis of boron and rare earth stabilized graphene doped polyvinylidene fluoride (PVDF) nanocomposite piezoelectric materials [J]. Polymer Composites, 2019, 40(9): 3623–3633. DOI: https://doi.org/10.1002/pc.25225.

    Article  Google Scholar 

  12. GHOLAMALIPOUR P, SIAVASHI M, DORANEHGARD M H. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid [J]. International Communications in Heat and Mass Transfer, 2019, 109: 104367. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2019.104367.

    Article  Google Scholar 

  13. IZADI A, SIAVASHI M, RASAM H, XIONG Qin-gang. MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling [J]. Applied Thermal Engineering, 2020, 168: 114843. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114843.

    Article  Google Scholar 

  14. SELIMEFENDIGIL F, ÖZTOP H F. Hydro-thermal performance of CNT nanofluid in double backward facing step with rotating tube bundle under magnetic field [J]. International Journal of Mechanical Sciences, 2020, 185: 105876. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105876.

    Article  Google Scholar 

  15. HOSSEINNEZHAD R, AKBARI O A, HASSANZADEH AFROUZI H, BIGLARIAN M, KOVEITI A, TOGHRAIE D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts [J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(1): 741–759. DOI: https://doi.org/10.1007/s10973-017-6900-5.

    Article  Google Scholar 

  16. HEMMAT ESFE M, HAJMOHAMMAD H, TOGHRAIE D, ROSTAMIAN H, MAHIAN O, WONGWISES S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems [J]. Energy, 2017, 137: 160–171. DOI: https://doi.org/10.1016/j.energy.2017.06.104.

    Article  Google Scholar 

  17. SIAVASHI M, MIRI JOIBARY S M. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 1595–1610. DOI:https://doi.org/10.1007/s10973-018-7829-z.

    Article  Google Scholar 

  18. POURFATTAH F, MOTAMEDIAN M, SHEIKHZADEH G, TOGHRAIE D, ALI AKBARI O. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water-Al2O3 nanofluid in a tube [J]. International Journal of Mechanical Sciences, 2017, 131–132: 1106–1116. DOI: https://doi.org/10.1016/j.ijmecsci.2017.07.049.

    Article  Google Scholar 

  19. SIAVASHI M, GHASEMI K, YOUSOFVAND R, DERAKHSHAN S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet [J]. Solar Energy, 2018, 170: 252–262. DOI: https://doi.org/10.1016/j.solener.2018.05.020.

    Article  Google Scholar 

  20. NOROUZI A M, SIAVASHI M, KHALIJI OSKOUEI M. Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles [J]. Renewable Energy, 2020, 145: 569–584. DOI: https://doi.org/10.1016/j.renene.2019.06.027.

    Article  Google Scholar 

  21. SELIMEFENDIGIL F, ÖZTOP H F. The potential benefits of surface corrugation and hybrid nanofluids in channel flow on the performance enhancement of a thermo-electric module in energy systems [J]. Energy, 2020, 213: 118520. DOI: https://doi.org/10.1016/j.energy.2020.118520.

    Article  Google Scholar 

  22. NAYAK M K, MEHMOOD R, MAKINDE O D, MAHIAN O, CHAMKHA A J. Magnetohydrodynamic flow and heat transfer impact on ZnO-SAE50 nanolubricant flow over an inclined rotating disk [J]. Journal of Central South University, 2019, 26(5): 1146–1160. DOI: https://doi.org/10.1007/s11771-019-4077-8.

    Article  Google Scholar 

  23. POURRAHMANI H, MOGHIMI M, SIAVASHI M, SHIRBANI M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs [J]. Applied Thermal Engineering, 2019, 150: 433–444. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.010.

    Article  Google Scholar 

  24. HEYHAT M M, MOUSAVI S, SIAVASHI M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle [J]. Journal of Energy Storage, 2020, 28: 101235. DOI: https://doi.org/10.1016/j.est.2020.101235.

    Article  Google Scholar 

  25. GÜRBÜZ E Y, SÖZEN A, KEÇEBAŞ A, ÖZBAŞ E. Experimental and numerical investigation of diffusion absorption refrigeration system working with ZnOAl2O3 and TiO2 nanoparticles added ammonia/water nanofluid [J]. Experimental Heat Transfer, 2020: 1–26. DOI: https://doi.org/10.1080/08916152.2020.1838668.

  26. MAGHRABIE H M, ATTALLA M, A A MOHSEN A. Performance assessment of a shell and helically coiled tube heat exchanger with variable orientations utilizing different nanofluids [J]. Applied Thermal Engineering, 2021, 182: 116013. DOI: https://doi.org/10.1016/j.applthermaleng.2020.116013.

    Article  Google Scholar 

  27. BHATTAD A, SARKAR J, GHOSH P. Experimentation on effect of particle ratio on hydrothermal performance of plate heat exchanger using hybrid nanofluid [J]. Applied Thermal Engineering, 2019, 162: 114309. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114309.

    Article  Google Scholar 

  28. ZARRINGHALAM M, KARIMIPOUR A, TOGHRAIE D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO-water nanofluid [J]. Experimental Thermal and Fluid Science, 2016, 76: 342–351. DOI: https://doi.org/10.1016/j.expthermflusci.2016.03.026.

    Article  Google Scholar 

  29. RANJBARZADEH R, MEGHDADI ISFAHANI A H, AFRAND M, KARIMIPOUR A, HOJAJI M. An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: Applicable as a heat exchanger [J]. Applied Thermal Engineering, 2017, 125: 69–79. DOI: https://doi.org/10.1016/j.applthermaleng.2017.06.110.

    Article  Google Scholar 

  30. GOODARZI M, AMIRI A, GOODARZI M S, SAFAEI M R, KARIMIPOUR A, LANGURI E M, DAHARI M. Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids [J]. International Communications in Heat and Mass Transfer, 2015, 66: 172–179. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2015.05.002.

    Article  Google Scholar 

  31. MORAVEJ M, BOZORG M V, GUAN Yu, LI L K B, DORANEHGARD M H, HONG Kun, XIONG Qin-gang. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids [J]. Sustainable Energy Technologies and Assessments, 2020, 40: 100783. DOI: https://doi.org/10.1016/j.seta.2020.100783.

    Article  Google Scholar 

  32. VAHABZADEH BOZORG M, SIAVASHI M. Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler [J]. International Journal of Mechanical Sciences, 2019, 151: 842–857. DOI: https://doi.org/10.1016/j.ijmecsci.2018.12.036.

    Article  Google Scholar 

  33. GÜRBÜZ E Y, SÖZEN A, VARIYENLI H İ, KHANLARI A, TUNCER A D. A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(10): 1–13. DOI: https://doi.org/10.1007/s40430-020-02601-1.

    Article  Google Scholar 

  34. GÜRBÜZ E Y, VARIYENLI H İ, SÖZEN A, KHANLARI A, ÖKTEN M. Experimental and numerical analysis on using CuO-Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2021, 31(1): 519–540. DOI: https://doi.org/10.1108/hff-04-2020-0195.

    Article  Google Scholar 

  35. ALSABERY A I, SELIMEFENDIGIL F, HASHIM I, CHAMKHA A J, GHALAMBAZ M. Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder [J]. International Journal of Heat and Mass Transfer, 2019, 140: 331–345. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.003.

    Article  Google Scholar 

  36. YAN W M, HO C J, TSENG Y T, QIN Cai-yan, RASHIDI S. Numerical study on convective heat transfer of nanofluid in a minichannel heat sink with micro-encapsulated PCM-cooled ceiling [J]. International Journal of Heat and Mass Transfer, 2020, 153: 119589. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119589.

    Article  Google Scholar 

  37. HO C J, GUO Yu-wei, YANG T F, RASHIDI S, YAN W M. Numerical study on forced convection of water-based suspensions of nanoencapsulated PCM particles/Al2O3 nanoparticles in a mini-channel heat sink [J]. International Journal of Heat and Mass Transfer, 2020, 157: 119965. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119965.

    Article  Google Scholar 

  38. MUKESH KUMAR P C, CHANDRASEKAR M. CFD analysis on heat and flow characteristics of double helically coiled tube heat exchanger handling MWCNT/water nanofluids [J]. Heliyon, 2019, 5(7): e02030. DOI: https://doi.org/10.1016/j.heliyon.2019.e02030.

    Article  Google Scholar 

  39. NAZARI M A, AHMADI M H, SADEGHZADEH M, SHAFII M B, GOODARZI M. A review on application of nanofluid in various types of heat pipes [J]. Journal of Central South University, 2019, 26(5): 1021–1041. DOI: https://doi.org/10.1007/s11771-019-4068-9.

    Article  Google Scholar 

  40. MIRZAEYAN M, TOGHRAIE D. Numerical investigation of laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders [J]. Journal of Central South University, 2019, 26(7): 1976–1999. DOI: https://doi.org/10.1007/s11771-019-4146-z.

    Article  Google Scholar 

  41. AĞBULUT Ü, GÜREL A E, SARIDEMIR S. Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles-diesel blends using different machine learning algorithms [J]. Energy, 2021, 215: 119076. DOI: https://doi.org/10.1016/j.energy.2020.119076.

    Article  Google Scholar 

  42. NOROUZI A M, SIAVASHI M, AHMADI R, TAHMASBI M. Experimental study of a parabolic trough solar collector with rotating absorber tube [J]. Renewable Energy, 2021, 168: 734–749. DOI: https://doi.org/10.1016/j.renene.2020.12.088.

    Article  Google Scholar 

  43. XUAN Yi-min, ROETZEL W. Conceptions for heat transfer correlation of nanofluids [J]. International Journal of Heat and Mass Transfer, 2000, 43(19): 3701–3707. DOI: https://doi.org/10.1016/S0017-9310(99)00369-5.

    Article  MATH  Google Scholar 

  44. AFSHARI F, ZAVARAGH H G, SAHIN B, GRIFONI R C, CORVARO F, MARCHETTI B, POLONARA F. On numerical methods optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers [J]. Mathematics and Computers in Simulation, 2018, 152: 51–68. DOI: https://doi.org/10.1016/j.matcom.2018.04.004.

    Article  MathSciNet  MATH  Google Scholar 

  45. VERMAHMOUDI Y, PEYGHAMBARZADEH S M, HASHEMABADI S H, NARAKI M. Experimental investigation on heat transfer performance of Fe2O3/water nanofluid in an air-finned heat exchanger [J]. European Journal of Mechanics-B/Fluids, 2014, 44: 32–41. DOI: https://doi.org/10.1016/j.euromechflu.2013.10.002.

    Article  Google Scholar 

  46. KUMAR N, SONAWANE S S. Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger [J]. International Communications in Heat and Mass Transfer, 2016, 78: 277–284. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.09.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by KHANLARI Ataollah and TUNCER Azim Doğuş. KHANLARI Ataollah and SÖZEN Adnan provided the measured landslides displacement data, and analyzed the measured data. AFSHARI Faraz, SÖZEN Adnan, KHANLARI Ataollah established the CFD models and calculated the predicted results. SÖZEN Adnan and TUNCER Azim Dogus analyzed the calculated results. The initial draft of the manuscript was written by AFSHARI Faraz, SÖZEN Adnan, KHANLARI Ataollah and TUNCER Azim Dogus. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Azim Doğuş Tuncer.

Additional information

Conflict of interest

AFSHARI Faraz, SÖZEN Adnan, KHANLARI Ataollah, and TUNCER Azim Doğuş declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshari, F., Sözen, A., Khanlari, A. et al. Heat transfer enhancement of finned shell and tube heat exchanger using Fe2O3/water nanofluid. J. Cent. South Univ. 28, 3297–3309 (2021). https://doi.org/10.1007/s11771-021-4856-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4856-x

Key words

关键词

Navigation