Skip to main content
Log in

Field controllable electronic properties of MnPSe3/WS2 heterojunction for photocatalysis

锰磷硒/二硫化钨异质结在外加电场下电子结构性质及催化性能的可控性研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides are interesting candidates as photocatalysts for hydrogen evolution reaction. The MnPSe3/WS2 heterostructure is hence studied here with first principles calculations by exploring its electronic properties under the application of an electric field. It is discovered that the band gap will decrease from the WS2 monolayer to the MnPSe3/WS2 heterostructure with Perdew-Burke-Ernzerhof functional, while increase slightly when electron correlation is involved. The conduction band minimum of the heterostructure is determined by the MnPSe3 layer, while the valence band maximum is contributed by the WS2 layer. The band edges and band gap suggest that the heterostructure will have good photocatalytic properties for water splitting. Moreover, comparing to monolayer WS2, the light absorption in both the ultraviolet and visible regions will be enhanced. When an electric field is present, a linear relation is observed between the electric field and the band gap within specific range, which can thus modulate the photocatalytic performance of this heterostructure.

摘要

过渡金属硫属化合物是光催化分解水制氢的可能催化剂。在本工作中我们通过第一性原理计算 研究了一个锰磷硒单层薄膜和二硫化钨单层薄膜所构成的异质结的电子结构性质, 及其对外加电场的 响应。我们发现构建异质结之后, 体系的带隙比单层二硫化钨薄膜有所减小, 其价带和导带的带隙边 缘分别源自锰磷硒单层薄膜和二硫化钨单层薄膜。体系带隙的大小以及带隙边缘的位置表面该异质结 可能是光催化分解水的良好催化材料。与单层二硫化钨薄膜相比较, 所构建的异质结在紫外光和可见 光区域对光的吸收都有所增强。在具有外加电场的情况下, 在特定电场强度范围内电场强度和带隙存 在线性关系, 所以, 施加外加电场可以有效地调节该异质结的带隙和带隙边缘位置, 进而提升其催化 性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YANG J, SHIN H S. Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction [J]. J Mater Chem A, 2014, 2(17): 5979–5985. DOI: https://doi.org/10.1039/c3ta14151a.

    Article  Google Scholar 

  2. MILLER E L. Photoelectrochemical water splitting [J]. Energy & Environmental Science, 2015, 8(10): 2809–2810. DOI: https://doi.org/10.1039/c5ee90047f.

    Article  Google Scholar 

  3. WANG Feng, WANG Zhen-xing, YIN Lei, CHENG Rui-qing, WANG Jun-jun, WEN Yao, SHIFA T A, WANG Feng-mei, ZHANG Yu, ZHAN Xue-ying, HE Jun. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection [J]. Chemical Society Reviews, 2018, 47(16): 6296–6341. DOI: https://doi.org/10.1039/c8cs00255j.

    Article  Google Scholar 

  4. KOPPENS F H, MUELLER T, AVOURIS P, FERRARI A C, VITIELLO M S, POLINI M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780–793. DOI: https://doi.org/10.1038/nnano.2014.215.

    Article  Google Scholar 

  5. MAK K F, SHAN Jie. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides [J]. Nature Photonics, 2016, 10(4): 216–226. DOI: https://doi.org/10.1038/nphoton.2015.282.

    Article  Google Scholar 

  6. VOIRY D, YANG J, CHHOWALLA M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction [J]. Advanced Materials, 2016, 28(29): 6197–6206. DOI: https://doi.org/10.1002/adma.201505597.

    Article  Google Scholar 

  7. DU Ke-zhao, WANG Xing-zhi, LIU Yang, HU Peng, UTAMA M I B, GAN C K, XIONG Qi-hua, KLOC C. Weak van der waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides [J]. ACS Nano, 2016, 10(2): 1738–1743. DOI: https://doi.org/10.1021/acsnano.5b05927.

    Article  Google Scholar 

  8. ZHANG Xu, ZHAO Xu-dong, WU Di-hua, JING Yu, ZHOU Zhen. MnPSe3 monolayer: A promising 2D visible-light photohydrolytic catalyst with high carrier mobility [J]. Advanced Science, 2016, 3(10): 1600062. DOI: https://doi.org/10.1002/advs.201600062.

    Article  Google Scholar 

  9. FANG Li-mei, FENG Qing-guo, LUO Sheng-nian. Tunable electronic properties of monolayer MnPSe3/MoTe2 heterostructure: A first principles study [J]. Journal of Physics: Condensed Matter, 2019, 31(40): 405705. DOI: https://doi.org/10.1088/1361-648x/ab2b1c.

    Google Scholar 

  10. FANG Li-mei, LIANG Wei-zheng, FENG Qing-guo, LUO Sheng-nian. Structural engineering of bilayer PtSe2 thin films: A first-principles study [J]. Journal of Physics: Condensed Matter, 2019, 31(45): 455001. DOI: https://doi.org/10.1088/1361-648x/ab34bc.

    Google Scholar 

  11. FENG Qing-guo. Electronic, magnetic and optical properties of transition-metal and hydroxides doped monolayer g-C3N4: A first principles investigation [J]. Journal of Physics Condensed Matter, 2020, 32(44): 445602. DOI: https://doi.org/10.1088/1361-648X/aba387.

    Article  Google Scholar 

  12. FU Ling, WANG Ran, ZHAO Chen-xu, HUO Jin-rong, HE Chao-zheng, KIM K H, ZHANG Wei. Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study [J]. Chemical Engineering Journal, 2021, 414: 128857. DOI: https://doi.org/10.1016/j.cej.2021.128857.

    Article  Google Scholar 

  13. WU Qiu-mei, DENG Da-kuan, HE Yi-lun, ZHOU Zhong-cheng, SANG Shang-bin, ZHOU Zhi-hua. Fe/N-doped mesoporous carbons derived from soybeans: A highly efficient and low-cost non-precious metal catalyst for ORR [J]. Journal of Central South University, 2020, 27(2): 344–355. DOI: https://doi.org/10.1007/s11771-020-4300-7.

    Article  Google Scholar 

  14. JIN Lin-feng, CHAI Li-yuan, SONG Ting-ting, YANG Wei-chun, WANG Hai-ying. Preparation of magnetic Fe3O4@Cu/Ce microspheres for efficient catalytic oxidation co-adsorption of arsenic(III) [J]. Journal of Central South University, 2020, 27(4): 1176–1185. DOI: https://doi.org/10.1007/s11771-020-4358-2.

    Article  Google Scholar 

  15. ATACA C, ŞAHIN H, CIRACI S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomblike structure [J]. The Journal of Physical Chemistry C, 2012, 116(16): 8983–8999. DOI: https://doi.org/10.1021/jp212558p.

    Article  Google Scholar 

  16. RUPPERT C, ASLAN O B, HEINZ T F. Optical properties and band gap of single-and few-layer MoTe2 crystals [J]. Nano Letters, 2014, 14(11): 6231–6236. DOI: https://doi.org/10.1021/nl502557g.

    Article  Google Scholar 

  17. ZHU J, WANG Z C, DAI H, et al. Boundary activated hydrogen evolution reaction on monolayer MoS2 [J]. Nature Communications, 2019, 10(1): 1348. DOI: https://doi.org/10.1038/s41467-019-09269-9.

    Article  Google Scholar 

  18. REN Xian-pei, YANG Fan, CHEN Rong, REN Pin-yun, WANG Yong-hua. Improvement of HER activity for MoS2: Insight into the effect and mechanism of phosphorus postdoping [J]. New Journal of Chemistry, 2020, 44(4): 1493–1499. DOI: https://doi.org/10.1039/c9nj05229a.

    Article  Google Scholar 

  19. HE Q, WANG L, YIN K, LUO S. Vertically aligned ultrathin 1T-WS2 nanosheets enhanced the electrocatalytic hydrogen evolution [J]. Nanoscale Res Lett, 2018, 13(1): 167. DOI: https://doi.org/10.1186/s11671-018-2570-x.

    Article  Google Scholar 

  20. SARMA P V, TIWARY C S, RADHAKRISHNAN S, AJAYAN P M, SHAIJUMON M M. Oxygen incorporated WS2 nanoclusters with superior electrocatalytic properties for hydrogen evolution reaction [J]. Nanoscale, 2018, 10(20): 9516–9524. DOI: https://doi.org/10.1039/c8nr00253c.

    Article  Google Scholar 

  21. ZHANG Xiang-yong, FEI Hao, WU Zhuang-zhi, WANG De-zhi. A facile preparation of WS2 nanosheets as a highly effective HER catalyst [J]. Tungsten, 2019, 1(1): 101–109. DOI: https://doi.org/10.1007/s42864-019-00008-7.

    Article  Google Scholar 

  22. ZHOU Li-yan, YAN Shan-cheng, SONG Hai-zeng, WU Han, SHI Yi. Multivariate control of effective cobalt doping in tungsten disulfide for highly efficient hydrogen evolution reaction [J]. Scientific Reports, 2019, 9(1): 1–8. DOI: https://doi.org/10.1038/s41598-018-37598-0.

    Google Scholar 

  23. WU Long-fei, van HOOF A J F, DZADE N Y, GAO Lu, RICHARD M I, FRIEDRICH H, de LEEUW N H, HENSEN E J M, HOFMANN J P. Enhancing the electrocatalytic activity of 2H-WS2 for hydrogen evolution via defect engineering [J]. Physical Chemistry Chemical Physics, 2019, 21(11): 6071–6079. DOI: https://doi.org/10.1039/c9cp00722a.

    Article  Google Scholar 

  24. BALASUBRAMANYAM S, SHIRAZI M, BLOODGOOD M A, WU L, VERHEIJEN M A, VANDALON V, KESSELS W M M, HOFMANN J P, BOL A A. Edge-site nanoengineering of WS2 by low-temperature plasma-enhanced atomic layer deposition for electrocatalytic hydrogen evolution [J]. Chemistry of Materials, 2019, 31(14): 5104–5115. DOI: https://doi.org/10.1021/acs.chemmater.9b01008.

    Article  Google Scholar 

  25. ZHU Qing, CHEN Wen-zhou, CHENG Hua, LU Zhou-guang, PAN Hui. WS2 nanosheets with highly-enhanced electrochemical activity by facile control of sulfur vacancies [J]. ChemCatChem, 2019, 11(11): 2667–2675. DOI: https://doi.org/10.1002/cctc.201900341.

    Article  Google Scholar 

  26. XIAO Pei-yuan, LOU Ju-feng, ZHANG Hui-xian, SONG Wei-li, WU Xi-lin, LIN Hong-jun, CHEN Jian-rong, LIU Shou-jie, WANG Xiang-ke. Enhanced visible-light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: Synergistic effect and mechanism insight [J]. Catalysis Science & Technology, 2018, 8(1): 201–209. DOI: https://doi.org/10.1039/c7cy01784g.

    Article  Google Scholar 

  27. ZENG Peng, JI Xiao-yuan, SU Zhi-guo, ZHANG Song-ping. WS2/g-C3N4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis [J]. RSC Advances, 2018, 8(37): 20557–20567. DOI: https://doi.org/10.1039/c8ra02807a.

    Article  Google Scholar 

  28. OPOKU F, GOVENDER K K, van SITTERT C G C E, GOVENDER P P. Role of MoS2and WS2monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO4: A first-principles study [J]. New Journal of Chemistry, 2017, 41(20): 11701–11713.DOI: https://doi.org/10.1039/c7nj02340e.

    Article  Google Scholar 

  29. CAO Mao-qi, LIU Kang, ZHOU Hui-min, LI Hong-mei, GAO Xiao-hui, QIU Xiao-qing, LIU Min. Hierarchical TiO2 nanorods with a highly active surface for photocatalytic CO2 reduction [J]. Journal of Central South University, 2019, 26(6): 1503–1509. DOI: https://doi.org/10.1007/s11771-019-4106-7.

    Article  Google Scholar 

  30. TAN Xu, ZHOU Shan, TAO Hui-jin, WANG Wei-yang, WAN Qiang-wei, ZHANG Ke-chen. Influence of Ag on photocatalytic performance of Ag/ZnO nanosheet photocatalysts [J]. Journal of Central South University, 2019, 26(7): 2011–2018. DOI: https://doi.org/10.1007/s11771-019-4148-x.

    Article  Google Scholar 

  31. KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169–11186. DOI: https://doi.org/10.1103/physrevb.54.11169.

    Article  Google Scholar 

  32. HAFNER J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. Journal of Computational Chemistry, 2008, 29(13): 2044–2078. DOI: https://doi.org/10.1002/jcc.21057.

    Article  Google Scholar 

  33. PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  Google Scholar 

  34. GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. Journal of Computational Chemistry, 2006, 27(15): 1787–1799. DOI: https://doi.org/10.1002/jcc.20495.

    Article  Google Scholar 

  35. LIECHTENSTEIN A I, ANISIMOV V I, ZAANEN J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators [J]. Physical Review B, Condensed Matter, 1995, 52(8): R5467–R5470. DOI: https://doi.org/10.1103/physrevb.52.r5467.

    Article  Google Scholar 

  36. WANG Yue-chao, JIANG Hong. Local screened Coulomb correction approach to strongly correlated d-electron systems [J]. The Journal of Chemical Physics, 2019, 150(15): 154116. DOI: https://doi.org/10.1063/1.5089464.

    Article  Google Scholar 

  37. FENG Qing-guo. Electron correlation effect versus spin-orbit coupling for tungsten and impurities [J]. Journal of Physics Condensed Matter, 2020, 32(44): 445603. DOI: https://doi.org/10.1088/1361-648X/aba6a5.

    Article  Google Scholar 

  38. FENG Qing-guo. First principles investigation of electron correlation and Lifshitz transition within iron polynitrides [J]. Journal of Physics: Condensed Matter, 2021, 33(3): 035603. DOI: https://doi.org/10.1088/1361-648x/abbb41.

    Google Scholar 

  39. FENG Qing-guo. A magnetically controllable metastable LiSeHFeO isomer: An ab-initio investigation from bulk to film [J]. Journal of Materials Science, 2021, 56(2): 1461–1471. DOI: https://doi.org/10.1007/s10853-020-05413-9.

    Article  Google Scholar 

  40. BALLIF C, REGULA M, SCHMID P E, REMŠKAR M, SANJINÉS R, LÉVY F. Preparation and characterization of highly oriented, photoconducting WS2 thin films [J]. Applied Physics A, 1996, 62(6): 543–546. DOI: https://doi.org/10.1007/BF01571690.

    Google Scholar 

  41. ZENG Fan, ZHANG Wei-bing, TANG Bi-yu. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M=Mo, W; X=O, S, Se, Te): A comparative first-principles study [J]. Chinese Physics B, 2015, 24(9): 097103. DOI: https://doi.org/10.1088/1674-1056/24/9/097103.

    Article  Google Scholar 

  42. PERDEW J P. Density functional theory and the band gap problem [J]. International Journal of Quantum Chemistry, 1985, 28(S19): 497–523. DOI: https://doi.org/10.1002/qua.560280846.

    Article  Google Scholar 

  43. de WAELE S, LEJAEGHERE K, SLUYDTS M, COTTENIER S. Error estimates for density-functional theory predictions of surface energy and work function [J]. Physical Review B, 2016, 94(23): 235418. DOI: https://doi.org/10.1103/physrevb.94.235418.

    Article  Google Scholar 

  44. GARG R, DUTTA N K, CHOUDHURY N R. Work function engineering of graphene [J]. Nanomaterials (Basel, Switzerland), 2014, 4(2): 267–300. DOI: https://doi.org/10.3390/nano4020267.

    Article  Google Scholar 

  45. FERNÁNDEZ G P A, GRÉVIN B, CHEVALIER N, BOROWIK L. Calibrated work function mapping by Kelvin probe force microscopy [J]. The Review of Scientific Instruments, 2018, 89(4): 043702. DOI: https://doi.org/10.1063/1.5007619.

    Article  Google Scholar 

  46. LIAO Pei-lin, CARTER E A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides [J]. Chemical Society Reviews, 2013, 42(6): 2401–2422. DOI: https://doi.org/10.1039/c2cs35267b.

    Article  Google Scholar 

  47. JIAO Y, ZHOU L, MA F, GAO G, KOU L, BELL J, SANVITO S, SANVITO S, DU A. Predicting single-layer technetium dichalcogenides (TcX2, X=S, Se) with promising applications in photovoltaics and photocatalysis [J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5385–5392. DOI: https://doi.org/10.1021/acsami.5b12606.

    Article  Google Scholar 

Download references

Funding

Project(2682019CX06) supported by the Fundamental Research Funds for the Central Universities, China; Project (2019KY23) supported by Research Start-up Fund from the Southwest Jiaotong University, China; Projects (20ZDYF0236, 20ZDYF0490) supported by the Key R&D Projects in the Field of High and new Technology of Sichuan, China; Project (52072311) supported by the National Natural Science Foundation of China; Project (2019JDJQ0009) supported by the Outstanding Young Scientific and Technical Talents in Sichuan Province, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-guo Feng  (冯庆国).

Additional information

Contributors

The concept of this work was developed by FANG Li-mei and FENG Qing-guo. FANG Li-mei performed the calculations, visualized the data and made the figures. FENG Qing-guo supervised the calculations. FANG Li-mei, EKHOLM Marcus, and FENG Qing-guo analyzed the initial data. The initial draft of the manuscript was written by FANG Li-mei and then revised by EKHOLM Marcus and FENG Qing-guo. ZENG Ying, HU Chun-feng and FENG Qing-guo contribute in the revision of the reviewed manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Lm., Zeng, Y., Ekholm, M. et al. Field controllable electronic properties of MnPSe3/WS2 heterojunction for photocatalysis. J. Cent. South Univ. 28, 3728–3736 (2021). https://doi.org/10.1007/s11771-021-4851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4851-2

Key words

关键词

Navigation