Skip to main content
Log in

Machine learning based online fault prognostics for nonstationary industrial process via degradation feature extraction and temporal smoothness analysis

机器学习下的基于退化特征提取和时间平滑分析的非平稳工业过程在线故障预测

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general, slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis (FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor (KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process.

摘要

故障退化预测是预估过程劣化和故障发生的时间, 已被认为是维护策略中的一个关键组成部分。故障退化过程通常是缓慢变化的, 可以用自回归模型来建模。然而, 工业过程往往表现出典型的非平稳特性, 这就给故障退化信息的获取和非平稳过程的建模带来了挑战。针对上述问题, 本文提出了一种新的故障退化建模和在线故障预测策略。首先, 提出一种面向故障退化的慢特征分析(FDSFA)算法提取故障退化方向, 并沿该方向提取候选故障退化特征。然后, 利用趋势评估算法来选择主要的故障退化特征。其次, 结合主要的故障退化特征及其稳定性加权因子, 计算关键故障退化因子来表征故障退化趋势。针对过程非平稳特性, 建立了带时序平滑正则项的时变回归模型。在更新策略的基础上, 通过对预测误差的分析和建模, 进一步建立了在线故障预测模型。最后, 通过一个实际的工业案例验证了所提方法的预测性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAMEZANI S, MOINI A, RIAHI M, MARQUEZ A C. A model to determining the remaining useful life of rotating equipment, based on a new approach to determining state of degradation[J]. Journal of Central South University, 2020, 27(8): 2291–2310. DOI: https://doi.org/10.1007/s11771-020-4450-7.

    Article  Google Scholar 

  2. ZHAO Chun-hui, HUANG Biao. A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis [J]. AIChE Journal, 2018, 64(5): 1662–1681. DOI: https://doi.org/10.1002/aic.16048.

    Article  Google Scholar 

  3. CHAI Zheng, ZHAO Chun-hui. Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification [J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 54–66. DOI: https://doi.org/10.1109/TII.2019.2915559.

    Article  Google Scholar 

  4. DAI Yi, CHENG Shu, GAN Qin-jie, YU Tian-jian, WU Xun, BI Fu-liang. Life prediction of Ni-Cd battery based on linear Wiener process [J]. Journal of Central South University, 2021, 28(9): 2919–2930. DOI: https://doi.org/10.1007/s11771-021-4816-5.

    Article  Google Scholar 

  5. ZHAO Chun-hui, GAO Fu-rong. Online fault prognosis with relative deviation analysis and vector autoregressive modeling [J]. Chemical Engineering Science, 2015, 138: 531–543. DOI: https://doi.org/10.1016/j.ces.2015.08.037.

    Article  Google Scholar 

  6. COSME L B, CAMINHAS W M, D’ANGELO M F S V, PALHARES R M. A novel fault-prognostic approach based on interacting multiple model filters and fuzzy systems [J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 519–528. DOI: https://doi.org/10.1109/TIE.2018.2826449.

    Article  Google Scholar 

  7. LI Nai-peng, LEI Ya-guo, LIN Jing, DING S X. An improved exponential model for predicting remaining useful life of rolling element bearings [J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762–7773. DOI: https://doi.org/10.1109/TIE.2015.2455055.

    Article  Google Scholar 

  8. WANG Yu, PENG Yi-zhen, ZI Yan-yang, JIN Xiao-hang, TSUI K L. A two-stage data-driven-based prognostic approach for bearing degradation problem [J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 924–932. DOI: https://doi.org/10.1109/TII.2016.2535368.

    Article  Google Scholar 

  9. ADEDIGBA S A, KHAN F, YANG Ming. Dynamic failure analysis of process systems using principal component analysis and Bayesian network [J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 2094–2106. DOI: https://doi.org/10.1021/acs.iecr.6b03356.

    Article  Google Scholar 

  10. ZHANG Shu-mei, ZHAO Chun-hui, HUANG Biao. Simultaneous static and dynamic analysis for fine-scale identification of process operation statuses [J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5320–5329. DOI: https://doi.org/10.1109/TII.2019.2896987.

    Article  Google Scholar 

  11. DONG Shao-jiang, LUO Tian-hong. Bearing degradation process prediction based on the PCA and optimized LS-SVM model [J]. Measurement, 2013, 46(9): 3143–3152. DOI: https://doi.org/10.1016/j.measurement.2013.06.038.

    Article  Google Scholar 

  12. WANG Wen-yi. Toward dynamic model-based prognostics for transmission gears [C]//AeroSense 2002. Proc SPIE 4733, Component and Systems Diagnostics, Prognostics, and Health Management II, Orlando, FL, USA. 2002, 4733: 157–167. DOI: https://doi.org/10.1117/12.475505.

  13. LI Gang, QIN S J, JI Yin-dong, ZHOU Dong-hua. Reconstruction based fault prognosis for continuous processes [J]. Control Engineering Practice, 2010, 18(10): 1211–1219. DOI: https://doi.org/10.1016/j.conengprac.2010.05.012.

    Article  Google Scholar 

  14. ZHAO Chun-hui, SUN You-xian. Subspace decomposition approach of fault deviations and its application to fault reconstruction [J]. Control Engineering Practice, 2013, 21(10): 1396–1409. DOI: https://doi.org/10.1016/j.conengprac.2013.06.008.

    Article  Google Scholar 

  15. ZHAO Chun-hui, GAO Fu-rong. Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis [J]. IEEE Transactions on Control Systems Technology, 2016, 24(3): 928–939. DOI: https://doi.org/10.1109/TCST.2015.2464331.

    Article  Google Scholar 

  16. ZHAO Chun-hui, GAO Fu-rong. Critical-to-fault-degradation variable analysis and direction extraction for online fault prognostic [J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 842–854. DOI: https://doi.org/10.1109/TCST.2016.2576018.

    Article  Google Scholar 

  17. JIA Xiao-dong, ZHAO Ming, DI Yuan, YANG Qi-bo, LEE J. Assessment of data suitability for machine prognosis using maximum mean discrepancy [J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5872–5881. DOI: https://doi.org/10.1109/TIE.2017.2777383.

    Article  Google Scholar 

  18. LIAO Lin-xia, JIN Wen-jing, PAVEL R. Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment [J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7076–7083. DOI: https://doi.org/10.1109/TIE.2016.2586442.

    Article  Google Scholar 

  19. MANN H B. Nonparametric tests against trend [J]. Econometrica, 1945, 13(3): 245. DOI: https://doi.org/10.2307/1907187.

    Article  MathSciNet  Google Scholar 

  20. LU Yan-fei, LI Qing, PAN Zhi-peng, LIANG S Y. Prognosis of bearing degradation using gradient variable forgetting factor RLS combined with time series model [J]. IEEE Access, 2018, 6: 10986–10995. DOI: https://doi.org/10.1109/ACCESS.2018.2805280.

    Article  Google Scholar 

  21. BYON E, CHOE Y, YAMPIKULSAKUL N. Adaptive learning in time-variant processes with application to wind power systems [J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(2): 997–1007. DOI: https://doi.org/10.1109/TASE.2015.2440093.

    Article  Google Scholar 

  22. LOU Zhi-jiang, WANG You-qing. Multimode continuous processes monitoring based on hidden semi-Markov model and principal component analysis [J]. Industrial & Engineering Chemistry Research, 2017, 56(46): 13800–13811. DOI: https://doi.org/10.1021/acs.iecr.7b01721.

    Article  Google Scholar 

  23. LI Xiang, ZHANG Wei, DING Qian. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction [J]. Reliability Engineering & System Safety, 2019, 182: 208–218. DOI: https://doi.org/10.1016/j.ress.2018.11.011.

    Article  Google Scholar 

  24. BRINGMANN L F, HAMAKER E L, VIGO D E, AUBERT A, BORSBOOM D, TUERLINCKX F. Changing dynamics: Time-varying autoregressive models using generalized additive modeling [J]. Psychological Methods, 2017, 22(3): 409–425. DOI: https://doi.org/10.1037/met0000085.

    Article  Google Scholar 

  25. WU Wei, HU Jing-tao, ZHANG Ji-long. Prognostics of machine health condition using an improved ARIMA-based Prediction method [C]//2007 2nd IEEE Conference on Industrial Electronics and Applications. 2007, Harbin, China. IEEE, 2007: 1062–1067. DOI: https://doi.org/10.1109/ICIEA.2007.4318571.

  26. GAO Xin-qing, YANG Fan, HUANG De-xian. Model quality assessment and model mismatch detection: A temporal smoothness regularization approach [J]. IFAC-Papers OnLine, 2018, 51(18): 1–6. DOI: https://doi.org/10.1016/j.ifacol.2018.09.232.

    Article  Google Scholar 

  27. HU Yun-yun, ZHAO Chun-hui. Online fault prognostics based on degradation-oriented slow feature analysis and temporal smoothness analysis [C]//2019 12th Asian Control Conference (ASCC). IEEE, 2019: 844–849.

  28. SHANG Chao, HUANG Biao, YANG Fan, HUANG De-xian. Probabilistic slow feature analysis-based representation learning from massive process data for soft sensor modeling [J]. AIChE Journal, 2015, 61(12): 4126–4139. DOI: https://doi.org/10.1002/aic.14937.

    Article  Google Scholar 

  29. HAMED K H, RAMACHANDRA RAO A. A modified Mann-Kendall trend test for autocorrelated data [J]. Journal of Hydrology, 1998, 204(1–4): 182–196. DOI: https://doi.org/10.1016/S0022-1694(97)00125-X.

    Article  Google Scholar 

  30. YUE Sheng, WANG C Y. Regional streamflow trend detection with consideration of both temporal and spatial correlation [J]. International Journal of Climatology, 2002, 22(8): 933–946. DOI: https://doi.org/10.1002/joc.781.

    Article  Google Scholar 

  31. KENDALL M G. A new measure of rank correlation [J]. Biometrika, 1938, 30(1, 2): 81–93.

    Article  Google Scholar 

  32. ZOU Hui, HASTIE T. Regularization and variable selection via the elastic net [J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(2): 301–320. DOI: https://doi.org/10.1111/j.1467-9868.2005.00503.x.

    Article  MathSciNet  Google Scholar 

  33. YANG Xi-yun, MA Xue, KANG Ning, MAIHEMUTI M. Probability interval prediction of wind power based on KDE method with rough sets and weighted Markov chain [J]. IEEE Access, 2018, 6: 51556–51565. DOI: https://doi.org/10.1109/ACCESS.2018.2870430.

    Article  Google Scholar 

  34. CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature [J]. Geoscientific Model Development, 2014, 7(3): 1247–1250. DOI: https://doi.org/10.5194/gmd-7-1247-2014.

    Article  Google Scholar 

Download references

Funding

Project(U1709211) supported by NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization, China; Project(ICT2021A15) supported by the State Key Laboratory of Industrial Control Technology, Zhejiang University, China; Project(TPL2019C03) supported by Open Fund of Science and Technology on Thermal Energy and Power Laboratory, China

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-hui Zhao  (赵春晖) or Zhi-wu Ke  (柯志武).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Yy., Zhao, Ch. & Ke, Zw. Machine learning based online fault prognostics for nonstationary industrial process via degradation feature extraction and temporal smoothness analysis. J. Cent. South Univ. 28, 3838–3855 (2021). https://doi.org/10.1007/s11771-021-4848-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4848-x

Key words

关键词

Navigation