Skip to main content
Log in

Ferroelectric polarization-enhanced photocatalytic performance of heterostructured BaTiO3@TiO2 via interface engineering

界面工程调控铁电极化增强异质结构BaTiO3@TiO2光催化性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A catalyst of ferroelectric-BaTiO3@photoelectric-TiO2 nanohybrids (BaTiO3@TiO2) with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach. Compared to pure TiO2, pure BaTiO3 and BaTiO3/TiO2 physical mixture, the heterostructured BaTiO3@TiO2 exhibits significantly improved photocatalytic activity and cycling stability in decomposing Rhodamine B (RhB) and the degradation efficiency is 1.7 times higher than pure TiO2 and 7.2 times higher than pure BaTiO3. These results are mainly attributed to the synergy effect of photoelectric TiO2, ferroelectric-BaTiO3 and the rationally designed interfacial structure. The mesoporous microstructure of TiO2 is of a high specific area and enables excellent photocatalytic activity. The ferroelectric polarization induced built-in electric field in BaTiO3 nanoparticles, and the intimate interfacial interactions at the interface of BaTiO3 and TiO2 are effective in driving the separation and transport of photogenerated charge carriers. This strategy will stimulate the design of heterostructured photocatalysts with outstanding photocatalytic performance via interface engineering.

摘要

采用水解沉淀结合水热法成功合成光催化活性增强的铁电-BaTiO3@光电-TiO2纳米杂化光催化剂(BaTiO3@TiO2)。与纯TiO2, 纯BaTiO3和BaTiO3/TiO2机械混合物相比, 采用异质结构的BaTiO3@TiO2降解罗丹明B (RhB)的光催化活性和循环稳定性得到提升, 其光催化降解效率是纯TiO2的1.7 倍, 纯BaTiO3的7.2 倍。光催化降解效率的提升与光电TiO2, 铁电BaTiO3及两者界面结构的协同效应相关。介孔微结构的TiO2 因高的比表面积而具备优异的光催化活性。纳米BaTiO3因铁电极化产生的内建电场及BaTiO3与TiO2间紧密的界面相互作用而有效地促进光生载流子的分离和传输。通过调控界面工程将促进具有优异光催化性能异质结型光催化剂的设计与开发。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ISMAIL M, WU Zheng, ZHANG Luo-hong, MA Jiang-ping, JIA Yan-min, HU Yong-ming, WANG Yao-jin. High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition [J]. Chemosphere, 2019, 228: 212–218. DOI: https://doi.org/10.1016/j.chemosphere.2019.04.121.

    Article  Google Scholar 

  2. MA Jiang-ping, REN Jing, JIA Yan-min, WU Zheng, CHEN Lin, HAUGEN N O, HUANG Hai-tao, LIU Yong-sheng. High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition [J]. Nano Energy, 2019, 62: 376–383. DOI: https://doi.org/10.1016/j.nanoen.2019.05.058.

    Article  Google Scholar 

  3. HAN Fang, KAMBALA V S R, SRINIVASAN M, RAJARATHNAM D, NAIDU R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review [J]. Applied Catalysis A: General, 2009, 359(1, 2): 25–40. DOI: https://doi.org/10.1016/j.apcata.2009.02.043.

    Article  Google Scholar 

  4. WANG Huan-wei, FANG Xin, WAN Yu-chi, ZHAN Jing, WANG Zhi-jian, LIU Hua. Visible-lightinduced NiCo2O4@Co3O4 core/shell heterojunction photocatalysts for efficient removal of organic dyes [J]. Journal of Central South University, 2021, 28(10): 3040–3049. DOI: https://doi.org/10.1007/s11771-021-4793-8.

    Article  Google Scholar 

  5. YANG Bian, WU Chao, WANG Jian-wei, BIAN Ji-hong, WANG Lei, LIU Ming, DU Ya-ping, YANG Yao-dong. When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst [J]. Ceramics International, 2020, 46(4): 4248–4255. DOI: https://doi.org/10.1016/j.ceramint.2019.10.145.

    Article  Google Scholar 

  6. LEI Hua, ZHANG Huan-huan, ZOU Yan, DONG Xiao-ping, JIA Yan-min, WANG Fei-fei. Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants [J]. Journal of Alloys and Compounds, 2019, 809: 151840. DOI: https://doi.org/10.1016/j.jallcom.2019.151840.

    Article  Google Scholar 

  7. WANG J, TAFEN N, LEWIS J P, HONG Z, MANIVANNAN A, ZHI M, LI M, WU N. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts [J]. Journal of the American Chemical Society, 2009, 131(34): 12290–12297. DOI: https://doi.org/10.1021/ja903781h.

    Article  Google Scholar 

  8. SINGH S, FARAZ M, KHARE N. Recent advances in semiconductor-graphene and semiconductor-ferroelectric/ferromagnetic nanoheterostructures for efficient hydrogen generation and environmental remediation [J]. ACS Omega, 2020, 5(21): 11874–11882. DOI: https://doi.org/10.1021/acsomega.9b03913.

    Article  Google Scholar 

  9. TAN Xu, ZHOU Shan, TAO Hui-jin, WANG Wei-yang, WAN Qiang-wei, ZHANG Ke-chen. Influence of Ag on photocatalytic performance of Ag/ZnO nanosheet photocatalysts [J]. Journal of Central South University, 2019, 26(7): 2011–2018. DOI: https://doi.org/10.1007/s11771-019-4148-x.

    Article  Google Scholar 

  10. JIN Lin-feng, CHAI Li-yuan, SONG Ting-ting, YANG Wei-chun, WANG Hai-ying. Preparation of magnetic Fe3O4@Cu/Ce microspheres for efficient catalytic oxidation co-adsorption of arsenic(III) [J]. Journal of Central South University, 2020, 27(4): 1176–1185. DOI: https://doi.org/10.1007/s11771-020-4358-2.

    Article  Google Scholar 

  11. YAO Shun-yu, ZHANG Xu, QU Feng-yu, UMAR A, WU Xiang. Hierarchical WO3 nanostructures assembled by nanosheets and their applications in wastewater purification [J]. Journal of Alloys and Compounds, 2016, 689: 570–574. DOI: https://doi.org/10.1016/j.jallcom.2016.08.025.

    Article  Google Scholar 

  12. NING Xiao-feng, LU Gong-xuan. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting [J]. Nanoscale, 2020, 12(3): 1213–1223. DOI: https://doi.org/10.1039/c9nr09183a.

    Article  Google Scholar 

  13. WU Fei, YU Yan-hao, YANG Huang, et al. Simultaneous enhancement of charge separation and hole transportation in a TiO2-SrTiO3 core-shell nanowire photoelectrochemical system [J]. Advanced Materials, 2017, 29(28): 1701432. DOI: https://doi.org/10.1002/adma.201701432.

    Article  Google Scholar 

  14. ZHANG Jing, XU Qian, FENG Zhao-chi, LI Mei-jun, LI Can. Importance of the relationship between surface phases and photocatalytic activity of TiO2 [J]. Angewandte Chemie International Edition, 2008, 47(9): 1766–1769. DOI: https://doi.org/10.1002/anie.200704788.

    Article  Google Scholar 

  15. YANG Nai-liang, LIU Yuan-yuan, WEN Hao, TANG Zhi-yong, ZHAO Hui-jun, LI Yu-liang, WANG Dan. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment [J]. ACS Nano, 2013, 7(2): 1504–1512. DOI: https://doi.org/10.1021/nn305288z.

    Article  Google Scholar 

  16. LI Shun, LIN Yuan-hua, ZHANG Bo-ping, LI Jing-feng, NAN Ce-wen. BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism [J]. Journal of Applied Physics, 2009, 105(5): 054310. DOI: https://doi.org/10.1063/1.3091286.

    Article  Google Scholar 

  17. CUI Yong-fei, BRISCOE J, WANG Ya-qiong, TARAKINA N V, DUNN S. Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/a-Fe2O3 and the significance of interface morphology control [J]. ACS Applied Materials & Interfaces, 2017, 9(29): 24518–24526. DOI: https://doi.org/10.1021/acsam.

    Article  Google Scholar 

  18. LI Li, LIU Xuan, ZHANG Yi-ling, SALVADOR P A, ROHRER G S. Heterostructured (Ba, Sr)TiO3/TiO2 core/shell photocatalysts: Influence of processing and structure on hydrogen production [J]. International Journal of Hydrogen Energy, 2013, 38(17): 6948–6959. DOI: https://doi.org/10.1016/j.ijhydene.2013.03.130.

    Article  Google Scholar 

  19. LI Li, ROHRER G S, SALVADOR P A. Heterostructured ceramic powders for photocatalytic hydrogen production: Nanostructured TiO2 shells surrounding microcrystalline (ba, Sr)TiO3 cores [J]. Journal of the American Ceramic Society, 2012, 95(4): 1414–1420. DOI: https://doi.org/10.1111/j.1551-2916.2012.05076.x.

    Article  Google Scholar 

  20. FENG Ke-yuan, LIU Xiao-yan, SI Dong-hui, TANG Xiao, XING An, OSADA M, XIAO Peng. Ferroelectric BaTiO3 dipole induced charge transfer enhancement in dye-sensitized solar cells [J]. Journal of Power Sources, 2017, 350: 35–40. DOI: https://doi.org/10.1016/j.jpowsour.2017.03.049.

    Article  Google Scholar 

  21. YANG W, YU Y, STARR M B, YIN X, LI Z, KVIT A, WANG S, ZHAO P, WANG X. Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes [J]. Nano Letters, 2015, 15(11): 7574–7580. DOI: https://doi.org/10.1021/acs.nanolett.5b03988.

    Article  Google Scholar 

  22. HUANG Han-jie, LI Dan-zhen, LIN Qiang, SHAO Yu, CHEN Wei, HU Yin, CHEN Yi-bin, FU Xian-zhi. Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible light irradiation [J]. The Journal of Physical Chemistry C, 2009, 113(32): 14264–14269. DOI: https://doi.org/10.1021/jp902330w.

    Article  Google Scholar 

  23. WANG Z, SONG J, GAO F, SU R, ZHANG D, LIU Y, XU C, LOU X, YANG Y. Developing a ferroelectric nanohybrid for enhanced photocatalysis [J]. Chemical Communications (Cambridge, England), 2017, 53(54): 7596–7599. DOI: https://doi.org/10.1039/c7cc02548c.

    Article  Google Scholar 

  24. SU E C, HUANG Bing-shun, LEE J T, WEY M Y. Excellent dispersion and charge separation of SrTiO3-TiO2 nanotube derived from a two-step hydrothermal process for facilitating hydrogen evolution under sunlight irradiation [J]. Solar Energy, 2018, 159: 751–759. DOI: https://doi.org/10.1016/j.solener.2017.11.048.

    Article  Google Scholar 

  25. KOO Y S, SONG K M, HUR N, et al. Strain-induced magnetoelectric coupling in BaTiO3/Fe3O4 core/shell nanoparticles [J]. Applied Physics Letters, 2009, 94(3): 032903. DOI: https://doi.org/10.1063/1.3073751.

    Article  Google Scholar 

  26. GUAN B Y, GUAN B Y, YU L, LI J, LOU X W. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties [J]. Science Advances, 2016, 2(3): e1501554. DOI: https://doi.org/10.1126/sciadv.1501554.

    Article  Google Scholar 

  27. LIU X Y, LV S, FAN B Y, XING A, JIA B. Ferroelectric polarization-enhanced photocatalysis in BaTiO3-TiO2 core-shell heterostructures [J]. Nanomaterials (Basel, Switzerland), 2019, 9(8): E1116. DOI: https://doi.org/10.3390/nano9081116.

    Article  Google Scholar 

  28. HAFID L, GODEFROY G, EL IDRISSI A, MICHEL-CALENDINI F. Absorption spectrum in the near U. V. and electronic structure of pure Barium titanate [J]. Solid State Communications, 1988, 66(8): 841–845. DOI: https://doi.org/10.1016/0038-1098(88)90397-3.

    Article  Google Scholar 

  29. HURUM D C, AGRIOS A G, GRAY K A, RAJH T, THURNAUER M C. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR [J]. The Journal of Physical Chemistry B, 2003, 107(19): 4545–4549. DOI: https://doi.org/10.1021/jp0273934.

    Article  Google Scholar 

  30. POLKING M J, HAN M G, YOURDKHANI A, et al. Ferroelectric order in individual nanometre-scale crystals [J]. Nature Materials, 2012, 11(8): 700–709. DOI: https://doi.org/10.1038/nmat3371.

    Article  Google Scholar 

  31. GUO Jia-qi, ZHU Zhe, QUAN Hua-feng, DUAN Wen-jiu, GAO Ju. Domain switchings within BaTiO3 nanofibers under different polarizing voltages and loading forces [J]. Ceramics International, 2017, 43(3): 3113–3117. DOI: https://doi.org/10.1016/j.ceramint.2016.11.125.

    Article  Google Scholar 

  32. CHEN J, LU Hai-dong, LIU H J, CHU Ying-hao, DUNN S, (KEN) OSTRIKOV K, GRUVERMAN A, VALANOOR N. Interface control of surface photochemical reactivity in ultrathin epitaxial ferroelectric films [J]. Applied Physics Letters, 2013, 102(18): 182904. DOI: https://doi.org/10.1063/1.4802885.

    Article  Google Scholar 

  33. LIU Guang-qing, CHEN J, LICHTENSTEIGER C, TRISCONE J M, AGUADO-PUENTE P, JUNQUERA J, VALANOOR N. Positive effect of an internal depolarization field in ultrathin epitaxial ferroelectric films [J]. Advanced Electronic Materials, 2016, 2(1): 1500288. DOI: https://doi.org/10.1002/aelm.201500288.

    Article  Google Scholar 

  34. YANG Chong-yin, WANG Wen-deng, SHAN Zhi-chao, HUANG Fu-qiang. Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2 [J]. Journal of Solid State Chemistry, 2009, 182(4): 807–812. DOI: https://doi.org/10.1016/j.jssc.2008.12.018.

    Article  Google Scholar 

Download references

Funding

Project(cstc2020jcyj-msxmX0930) supported by the Natural Science Foundation of Chongqing, China; Project (KJQN201901522) supported by Technological Research Program of Chongqing Municipal Education Commission, China; Project(cx2020068) supported by the Venture & Innovation Support Program for Chongqing Overseas Returnees, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-yan Liu  (刘晓燕).

Additional information

Contributors

FAN Bao-yan and LIU Xiao-yan provided the concept and edited the draft of manuscript. LIU Hai-bo conducted the literature review and wrote the first draft of the manuscript. WANG Zhen-hui, ZHAO Yi-wen, YANG Sen, and LYU Si-yi conducted experiments and provided relevant data. XING An and ZHANG Jun analyzed the measured data. FAN Bao-yan, LI He and LIU Xiao-yan edited the draft of manuscript and revised the final version.

Conflict of interest

FAN Bao-yan, LIU Hai-bo, WANG Zhen-hui, ZHAO Yi-wen, YANG Sen, LYU Si-yi, XING An, ZHANG Jun, LI He and LIU Xiao-yan declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, By., Liu, Hb., Wang, Zh. et al. Ferroelectric polarization-enhanced photocatalytic performance of heterostructured BaTiO3@TiO2 via interface engineering. J. Cent. South Univ. 28, 3778–3789 (2021). https://doi.org/10.1007/s11771-021-4847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4847-y

Key words

关键词

Navigation