Skip to main content
Log in

Coupled thermo-hydro-mechanical process in buffer material and self-healing effects with joints

缓冲材料的热-水-力耦合过程及接缝愈合效应

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Within the multi-barrier system for high-level waste disposal, the technological gap formed by combined buffer material block becomes the weak part of buffer layer. In this paper, Gaomiaozi bentonite buffer material with technological gap was studied, the heat transfer induced by liquid water flow and water vapor was embedded into the energy conservation equation. Based on the Barcelona basic model, the coupled thermo-hydro-mechanical model of unsaturated bentonite was established by analyzing the swelling process of bentonite block and the compression process of joint material. The China-Mock-up test was adopted to compare the numerical calculation results with the test results so as to verify the rationality of the proposed model. On this basis, the effect of joint self-healing on dry density, thermal conductivity and permeability coefficient of buffer material was further analyzed. The results show that, with bentonite hydrating and swelling, the joint material gradually increases in dry density, and exhibits comparatively uniform hydraulic and thermal conductivity properties as compacted bentonite block. As a result, the buffer material gradually shifts to homogenization due to the coordinated deformation.

摘要

在高放废物处置库工程屏障系统中, 缓冲材料砌块组合堆砌形成的技术接缝成为了缓冲层的薄 弱部位. 本文研究了技术接缝的高庙子(GMZ)膨润土缓冲材料, 将液态水流动和水蒸汽迁移引起的传 热嵌入到能量守恒方程之中, 基于Barcelona 基本模型, 通过分析膨润土砌块的膨胀过程及接缝材料的 压缩过程, 建立了非饱和膨润土热-水-力耦合模型. 然后以China-Mock-up 试验为例, 将数值计算结果 与试验结果进行对比, 以验证所提模型的合理性. 在此基础上, 进一步分析了接缝愈合效应对缓冲材 料的干密度、 导热系数和渗透系数的影响. 结果表明, 随着缓冲材料的水化膨胀, 接缝材料的干密度 逐渐增大, 导热性能和防渗性能逐渐与膨润土砌块趋于一致, 缓冲材料在协调变形的作用下逐渐向均 质化发展.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VILLAR M V, GARCIASINERIZ J L, BARCENA I, LLORET A. State of the bentonite barrier after five years operation of an in situ test simulating a high level radioactive waste repository [J]. Engineering Geology, 2005, 80(3): 175–198. DOI: https://doi.org/10.1016/j.enggeo.2005.05.001.

    Article  Google Scholar 

  2. SAMPER J, ZHENG L, MONTENEGRO L, FERNÁNDEZ A M, RIVAS P. Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test [J]. Appl Geochem, 2008, 23(5): 1186–1201. DOI: https://doi.org/10.1016/j.apgeochem.2007.11.010.

    Article  Google Scholar 

  3. BAI Bing, XU Tao, NIE Qing-ke, LI Peng-peng. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils [J]. International Journal of Heat and Mass Transfer, 2020, 153: 119573. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119573.

    Article  Google Scholar 

  4. COLLIN F, LI X L, RADU J P, CHARLIER R. Thermo-hydro-mechanical coupling in clay barriers [J]. Engineering Geology, 2002, 64(2): 179–193. DOI: https://doi.org/10.1016/S0013-7952(01)00124-7.

    Article  Google Scholar 

  5. YE Wei-min, CUI Yu-jun, QIAN Li-xin, CHEN Bao. An experimental study of the water transfer through confined compacted GMZ-bentonite [J]. Engineering Geology, 2009, 108(3, 4): 169–176. DOI: https://doi.org/10.1016/j.enggeo.2009.08.003.

    Article  Google Scholar 

  6. BAI Bing, ZHANG Jia-xi, LIU Lu-lu, JI Yan-jie. The deposition characteristics of coupled lead ions and suspended silicon powders along the migration distance in water seepage [J]. Transport in Porous Media, 2020, 134(3): 707–724. DOI: https://doi.org/10.1007/s11242-020-01464-3.

    Article  MathSciNet  Google Scholar 

  7. CHEN Liang, LIU Yue-miao, WANG Ju, CAO Sheng-fei, XIE Jing-li, MA Li-ke, ZHAO Xing-guang, LI Ya-wei, LIU Jian. Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test [J]. Engineering Geology, 2014, 172(8): 57–68. DOI: https://doi.org/10.1016/j.enggeo.2014.01.008.

    Article  Google Scholar 

  8. ZHAO Jing-bo, CHEN Liang, COLLIN F, LIU Yue-miao, WANG Ju. Numerical modeling of coupled thermal-hydro-mechanical behavior of GMZ bentonite in the China-Mock-up test [J]. Engineering Geology, 2016, 214(30): 116–126. DOI: https://doi.org/10.1016/j.enggeo.2016.09.015.

    Article  Google Scholar 

  9. POPP T, ROLKE C, SALZER K. Hydromechanical properties of bentonite-sand block assemblies with interfaces in engineered barrier systems [J]. Geological Society London Special Publications, 2014, 415(1): 19–33. DOI: https://doi.org/10.1144/SP415.1.

    Article  Google Scholar 

  10. GUERRA A M, CUI Y, MOKNI N, DELAGE P, BORNERT M, AIMEDIEU P, TANG A M, BERNIER F. Investigation of the hydro-mechanical behaviour of a pellet/powder MX80 bentonite mixture using an infiltration column [J]. Engineering Geology, 2018, 243: 18–25. DOI: https://doi.org/10.1016/j.enggeo.2018.06.006.

    Article  Google Scholar 

  11. CHEN Bao, CHEN Jian-qin, CAO Yong-chao. Influence of joint on self-sealing behaviour of highly compacted bentonite in engineering barrier [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 618–624. DOI: https://doi.org/10.3969/j.issn.1000-6915.2012.03.021. (in Chinese)

    Google Scholar 

  12. ZHANG Hu-yuan, WANG Xue-wen, LIU Ping, YAN Ming, PENG Yu. Sealing and healing of compacted bentonite block joints in HLW disposal [J]. Chinese Journal of Rock Mechanics & Engineering, 2016, 35(S2): 3605–3614. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.1691. (in Chinese)

    Google Scholar 

  13. CHEN Yong-gui, JIA Ling-yan, YE Wei-ming, CHEN Bao, CUI Yu-jun. Advances in experimental investigation on hydraulic fracturing behavior of bentonite-based materials used for HLW disposal [J]. Environmental Earth Sciences, 2016, 75(9): 787. DOI: https://doi.org/10.1007/s12665-016-5644-z.

    Article  Google Scholar 

  14. VILLAR M V, SÁNCHEZ M, GENS A. Behaviour of a bentonite barrier in the laboratory: Experimental results up to 8 years and numerical simulation [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33: 476–485. DOI: https://doi.org/10.1016/j.pce.2008.10.055.

    Article  Google Scholar 

  15. BAI Bing, RAO Deng-yu, XU Tao, CHEN Pei-pei. SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface [J]. International Journal of Heat and Mass Transfer, 2018, 117: 517–526. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.004.

    Article  Google Scholar 

  16. BAI Bing, SU Zhong-qin. Thermal responses of saturated silty clay during repeated heating — cooling processes [J]. Transport in Porous Media, 2012, 93(1): 1–11. DOI: https://doi.org/10.1007/s11242-012-9939-6

    Article  MathSciNet  Google Scholar 

  17. JIANG Zhong-ming, HOXHA D, HOMAND F, CHEN Yong-gui. Simulation of coupled THM process in surrounding rock mass of nuclear waste repository in argillaceous formation [J]. Journal of Central South University, 2015, 22(2): 631–637. DOI: https://doi.org/10.1007/s11771-015-2564-0.

    Article  Google Scholar 

  18. BAI Bing, NIE Qing-ke, ZHANG Yi-ke, WANG Xiao-long, HU Wei. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage [J]. Journal of Hydrology, 2021, 597: 125771. DOI: https://doi.org/10.1016/j.jhydrol.2020.125771.

    Article  Google Scholar 

  19. ZHANG Ming-li, WEN Zhi, XUE Ke, CHEN Liang-zhi, LI De-sheng. A coupled model for liquid water, water vapor and heat transport of saturated — unsaturated soil in cold regions: Model formulation and verification [J]. Environmental Earth Sciences, 2016, 75(8): 701. DOI: https://doi.org/10.1007/s12665-016-5499-3.

    Article  Google Scholar 

  20. LIU Yue-miao, CAI Mei-feng, WANG Ju. Thermal properties of buffer material for high-level radioactive waste disposal [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3891–3896. (in Chinese)

    Google Scholar 

  21. RAO Dengyu, BAI Bing. Study of the factors influencing diffusive tortuosity based on porescale SPH simulation of granular soil [J]. Transport in Porous Media, 2020, 132(11): 333–353. DOI: https://doi.org/10.1007/s11242-020-01394-0.

    Article  MathSciNet  Google Scholar 

  22. GENUCHTEN M T V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(44): 892–898. DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x.

    Article  Google Scholar 

  23. CARSEL R F, PARRISH R S. Developing joint probability distributions of soil water retention characteristics [J]. Water Resources Research, 1988, 24(5): 755–769. DOI: https://doi.org/10.1029/WR024i005p00755.

    Article  Google Scholar 

  24. LLORET A, VILLAR M V. Advances on the knowledge of the thermo-hydro-mechanical behavior of heavily compacted FEBEX bentonite [J]. Physics and Chemistry of the Earth, 2007, 32(8): 701–715. DOI: https://doi.org/10.1016/j.pce.2006.03.002.

    Article  Google Scholar 

  25. FERRARI A, SEIPHOORI A, RÜEDI J, LALOUI L. Shot-clay MX-80 bentonite: An assessment of the hydro-mechanical behavior [J]. Engineering Geology, 2014, 173(2): 10–18. DOI: https://doi.org/10.1016/j.enggeo.2014.01.009.

    Article  Google Scholar 

  26. CUI Su-li, DU Yan-feng, WANG Xue-pan, HUANG Sen, XIE Wan-li. Influence of temperature on swelling deformation characteristic of compacted GMZ bentonite-sand mixtures [J]. Journal of Central South University, 2018, 25(11): 2819–2830. DOI: https://doi.org/10.1007/s11771-018-3955-9.

    Article  Google Scholar 

  27. LIU Fei-fei, MAO Xue-song, ZHANG Jian-xun, WU Qian, LI Ying-ying, XU Cheng. Isothermal diffusion of water vapor in unsaturated soils based on Fick’s second law [J]. Journal of Central South University, 2020, 27(7): 2017–2031. DOI: https://doi.org/10.1007/s11771-020-4427-6.

    Article  Google Scholar 

  28. BAI Bing, GUO Lan-jie, HAN Song. Pore pressure and consolidation of saturated silty clay induced by progressively heating/cooling [J]. Mechanics of Materials, 2014, 75: 84–94. DOI: https://doi.org/10.1016/j.mechmat.2014.04.005.

    Article  Google Scholar 

  29. BAI Bing, RAO Deng-yu, CHANG Tao, GUO Zhi-guang. A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media [J]. Journal of Hydrology, 2019, 578: 124080. DOI: https://doi.org/10.1016/j.jhydrol.2019.124080.

    Article  Google Scholar 

  30. ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils [J]. Géotechnique, 1990, 40(3): 405–430. DOI: https://doi.org/10.1680/geot.1990.40.3.405.

    Article  Google Scholar 

  31. TANG Chao-Sheng, CHENG Qing, LENG Ting, SHI Bin, ZENG Hao, INYANG H I. Effects of wetting-drying cycles and desiccation cracks on mechanical behavior of an unsaturated soil [J]. Catena, 2020, 194: 104721. DOI: https://doi.org/10.1016/j.catena.2020.104721.

    Article  Google Scholar 

  32. YANG Guang-chang, BAI Bing. Thermo-hydro-mechanical model for unsaturated clay soils based on granular solid hydrodynamics theory [J]. International Journal of Geomechanics, 2019, 19(10): 04019115. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001498.

    Article  Google Scholar 

  33. FAN Qing-lai, LUAN Mao-tian, YANG Qing. Numerical implementation of implicit integration algorithm for modified Cam-clay model in ABAQUS [J]. Rock and Soil Mechanics, 2008, 29(1): 269–273. DOI: https://doi.org/10.16285/j.rsm.2008.01.051. (in Chinese)

    Google Scholar 

  34. SRIDHARAN A, RAO A S, SIVAPULLAIAH P V. Swelling pressure of clays [J]. Geotechnical Testing Journal, 1986, 9(1): 24–33.

    Article  Google Scholar 

  35. ZHANG Feng, YE Wei-ming, WANG Qiong, CHEN Yong-gui, CHEN Bao. An insight into the swelling pressure of GMZ01 bentonite with consideration of salt solution effects [J]. Engineering Geology, 2019, 251: 190–196. DOI: https://doi.org/10.1016/j.enggeo.2019.02.016.

    Article  Google Scholar 

  36. YE Wei-min, SCHANZ T, QIAN Li-xin, WANG Ju, ARIFIN Y. Characteristics of welling pressure of densely compacted Gaomiaozi bentonite GMZ01 [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3861–3865. DOI: CNKI:SUN:YSLX.0.2007-S2-039. (in Chinese)

    Google Scholar 

  37. ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays [J]. Engineering Geology, 1999, 54(1, 2): 173–183. DOI: https://doi.org/10.1016/S0013-7952(99)00079-4.

    Article  Google Scholar 

  38. BAI Bing, LI Tao. Irreversible consolidation problem of a saturated porothermoelastic spherical body with a spherical cavity [J]. Applied Mathematical Modelling, 2013, 37(4): 1973–1982. DOI: https://doi.org/10.1016/j.apm.2012.05.003.

    Article  MathSciNet  MATH  Google Scholar 

  39. BAI Bing, SHI Xiao-ying. Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading [J]. Geomechanics and Engineering, 2017, 12(4): 707–721. DOI: https://doi.org/10.12989/gae.2017.12.4.707.

    Article  Google Scholar 

  40. LIU Yue-miao, WANG Ju, CAO Sheng-fei, MA Li-ke, XIE Jing-li, ZHAO Xing-guang, CHEN Liang. A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China [J]. Rock and Soil Mechanics, 2013, 34(10): 2756–2762. DOI: https://doi.org/10.16285/j.rsm.2013.10.043. (in Chinese)

    Google Scholar 

  41. YE Wei-ming, ZHU Chun-min, CHEN Yong-gui, CHEN Bao, CUI Yu-jun, WANG Ju. Influence of salt solutions on the swelling behavior of the compacted GMZ01 bentonite [J]. Environmental Earth Sciences, 2015, 74(1): 793–802. DOI: https://doi.org/10.1007/s12665-015-4108-1.

    Article  Google Scholar 

  42. NIE Qing-ke, LI You-dong, WANG Guo-hui, BAI Bing. Physicochemical and microstructural properties of red muds under acidic and alkaline conditions [J]. Applied Sciences, 2020, 10(9): 2993. DOI: https://doi.org/10.3390/app10092993.

    Article  Google Scholar 

  43. YE Wei-ming, CHEN Yong-gui, CHEN Bao, WANG Qiong, WANG Ju. Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite [J]. Engineering Geology, 2010, 116(1): 12–20. DOI: https://doi.org/10.1016/j.enggeo.2010.06.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-sheng Yang  (杨高升).

Additional information

Foundation item

Projects(52078031, U2034204) supported by the National Natural Science Foundation of China

Contributors

YANG Gao-sheng established the models, calculated the predicted results and edited the draft of manuscript. LIU Yue-miao and GAO Yu-feng provided the measured data, and analyzed the measured data. LI Jian and CAI Guo-qing edited the draft of manuscript.

Conflict of interest

YANG Gao-sheng, LIU Yue-miao, GAO Yu-feng, LI Jian and CAI Guo-qing declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Gs., Liu, Ym., Gao, Yf. et al. Coupled thermo-hydro-mechanical process in buffer material and self-healing effects with joints. J. Cent. South Univ. 28, 2905–2918 (2021). https://doi.org/10.1007/s11771-021-4815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4815-6

Key words

关键词

Navigation