Skip to main content
Log in

Influence of aging on microstructure, mechanical properties and stress corrosion cracking of 7136 aluminum alloy

时效对 7136 铝合金组织、 力学性能和腐蚀开裂的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The microstructure, mechanical properties and stress corrosion cracking (SCC) of 7136 aluminum alloy under T6, T79 and T74 aging treatments were studied and the effects of microstructure on the mechanical properties and SCC were discussed. The results show that the ultimate tensile strength and yield strength of the aging 7136 alloys follow this sequence from high to low: T6>T79>pre-aging>T74. For 7136 Al alloy after T6 aging, the average diameter of the precipitates was (5.7±1.7) nm, and the diameter of 60.7% (number fraction) precipitates was 2–6 nm, leading to a good precipitation strengthening. The KIC of T74-aging alloy is 38.2 MPa·m1/2, which is 26.1% more than that of T6-aging alloy and 17.5% more than that of T79-aging alloy. The improved fracture toughness in T74-aging alloy is mainly due to the reduction of the strength difference between intragranular and grain boundary. The SCC resistance of the aging 7136 alloys follows this sequence from high to low: T79 > T74 > T6. After T79 aging, the discontinuous grain boundary precipitates and narrow precipitate free zones were obtained in 7136 alloy, which was beneficial to SCC resistance.

摘要

本文研究了 7136 Al 合金 T6、 T79和T74态的组织、 力学性能和应力腐蚀开裂(SCC)之间的关系, 讨论了组织对力学性能和腐蚀开裂敏感性的影响. 结果表明, 7136 合金的抗拉强度和屈服强度值由高 到低依次为: T6>T79>预时效>T74. 7136-T6 合金析出相平均直径为(5.7±1.7) nm, 直径在2–6 nm的占 比为60.7% , 具有良好的析出强化效果. 7136-T74 合金KIC值为38.2 MPa·m1/2 , 比T6 时效高26.1%, 比 T79 时效高17.5%. T74 态合金断裂韧性的增加是由于晶内和晶界强度差减小. 7136 合金耐腐蚀开裂能 力由高到低依次为: T79>T74>T6. 这是由于 7136-T79 合金晶界析出相呈不连续分布和窄的无沉淀析 出带的共同作用, 而有利于增强耐腐蚀开裂能力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Reference

  1. ROMETSCH P A, ZHANG Yong, KNIGHT S. Heat treatment of 7xxx series aluminum alloys — Some recent developments [J]. Trans Nonferrous Met Soc China, 2014, 24: 2003–2017. DOI: https://doi.org/10.1016/S1003-6326(14)63306-9.

    Article  Google Scholar 

  2. ZHANG Xue-song, CHEN Youg-jun, HU Jun-ling. Recent advances in the development of aerospace materials [J]. Prog Aerosp Sci, 2018, 97: 22–34. DOI: https://doi.org/10.1016/j.paerosci.2018.01.001.

    Article  Google Scholar 

  3. WANG Yi-chang, WU Xiao-dong, CAO Ling-fei, TONG Xin, COUPER M J, LIU Qing. Effect of trace Er on the microstructure and properties of Al−Zn−Mg−Cu−Zr alloys during heat treatments [J]. Mater Sci Eng A, 2020, 792: 139807. DOI: https://doi.org/10.1016/j.msea.2020.139807.

    Article  Google Scholar 

  4. ZHAO Huan, CHEN Yi-qiang, BAPTISTE G, DIRK P, DIRK R. (Al,Zn)3 dispersoids assisted precipitation in an Al−Zn−Mg−Cu−Zr alloy [J]. Materialia, 2020, 10: 100641. DOI: https://doi.org/10.1016/j.mtla.2020.100641.

    Article  Google Scholar 

  5. LIU Jun-tao, ZHANg Yong-an, LI Xi-wu, LI Zhi-hui, XIONG Bai-qing, ZHANG Ji-shan. Thermodynamic calculation of high zinc-containing Al−Zn−Mg−Cu alloy [J]. Trans nonferrous Met Soc China, 2014, 24: 1481–1487. DOI: https://doi.org/10.1016/S1003-6326(14)63216-7.

    Article  Google Scholar 

  6. BAI P C, HOU X H, ZHANG X Y, ZHAO C W, XING Y M. Microstructure and mechanical properties of a large billet of spray formed Al−Zn−Mg−Cu alloy with high Zn content [J]. Mater Sci Eng A, 2009, 508: 23–27. DOI: https://doi.org/10.1016/j.msea.2008.12.010.

    Article  Google Scholar 

  7. MARLAUD T, DESCHAMPS A, BLEY F, LEFEBVRE W, BAROUX B. Influence of alloy composition and heat treatment on precipitate composition in Al−Zn−Mg−Cu alloys [J]. Acta Mater, 2010, 58: 248–260. DOI: https://doi.org/10.1016/j.actamat.2009.09.003.

    Article  Google Scholar 

  8. ZUO J R, HOU L G, SHI J T, CUI H, ZHUANG L Z, ZHANG J S. The mechanism of grain refinement and plasticity enhancement by an improved thermomechanical treatment of 7055 Al alloy [J]. Mater Sci Eng A, 2017, 702: 42–52. https://doi.org/10.1016/j.msea.2017.06.106.

    Article  Google Scholar 

  9. UMAMAHESWER A C, VASU V, GOVINDARAJU M, SRINADH S K V. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review [J]. Trans Nonferrous Met Soc China, 2016, 26: 1447–1471. DOI: https://doi.org/10.1016/S10036326(16)64220-6.

    Article  Google Scholar 

  10. YUAN Ding-ling, CHEN Kuang-hua, CHEN Song-yi, ZHOU Liang, CHANG Jiang-yu, HUANG Lan-ping, YI You-ping. Enhancing stress corrosion cracking resistance of low-Cu-containing Al−Zn−Mg−Cu alloys by slow quench rate [J]. Mater Des, 2019, 164: 558–569. DOI: https://doi.org/10.1016/j.matdes.2018.107558.

    Article  Google Scholar 

  11. LI Bo, WANG Xiao-min, CHEN Hui, HU Jie, CUI Huang, GOU Guo-qing. Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy [J]. J Alloys Compd, 2016, 678: 160–166. DOI: https://doi.org/10.1016/j.jallcom.2016.03.228.

    Article  Google Scholar 

  12. YANG Wen-chao, JI Shou-xun, ZHANG Qian, WANG Ming-pu. Investigation of mechanical and corrosion properties of an Al−Zn−Mg−Cu alloy under various ageing conditions and interface analysis of η′ precipitate [J]. Mater Des, 2015, 85: 752–761. DOI: https://doi.org/10.1016/j.matdes.2015.06.183.

    Article  Google Scholar 

  13. DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminum alloys [J]. Mater. Des, 2014, 56: 862–871. DOI:https://doi.org/10.1016/j.matdes.2013.12.002.

    Article  Google Scholar 

  14. LI J F, PENG Z W, LI C X, JIA Z Q, CHEN W J, ZHENG Z Q. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminum alloy with various aging treatments [J]. Chin J Nonferrous Met, 2008, 18: 755–762. https://doi.org/10.1016/S1003-6326(08)60130-2.

    Article  Google Scholar 

  15. XIAO Quan-feng, XU Yuan-ming, HUANG Ji-wu, LI Bo, WANG Bao-feng, LIU Shi-chao, FU Le. Effects of quenching agents, two-step aging and microalloying on tensile properties and stress corrosion cracking of Al−Zn−Mg−Cu alloys [J]. J Mater Res Technol, 2020, 9(5): 10198–10208. DOI: https://doi.org/10.1016/j.jmrt.2020.07.014.

    Article  Google Scholar 

  16. WEN Kai, XIONG Bai-qing, ZHANG You-gan, LI Zhi-hui, HUANG Shu-hui, YAN Li-zhen, YAN Hong-wei, LIU Hong-wei. Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al−Zn−Mg−Cu alloy [J]. Mater Sci Eng A, 2018, 716: 42–54. DOI:https://doi.org/10.1016/j.msea.2018.01.040.

    Article  Google Scholar 

  17. DONG Peng-xuan, CHEN Song-yi, CHEN Kang-hua. Effects of Cu content on microstructure and properties of super-high-strength Al−9.3Zn-−2.4Mg−xCu-Zr alloy [J]. J Alloys Comp, 2019, 788: 329–337. DOI: https://doi.org/10.1016/j.jallcom.2019.02.228.

    Article  Google Scholar 

  18. SHA G, CEREZO A. Early-stage precipitation in Al−Zn−Mg−Cu alloy (7050) [J]. Acta Mater, 2004, 52: 4513–4516. DOI: https://doi.org/10.1016/j.actamat.2004.06.025.

    Article  Google Scholar 

  19. DAI Pan, LUO Xian, YANG Yan-qing, KOU Zong-de, HUANG Bin, WANG Chen, ZANG Jin-xin. Nano-scale precipitate evolution and mechanical properties of 7085 aluminum alloy during thermal exposure [J]. Mater Sci Eng A, 2018, 729: 411–422. DOI: https://doi.org/10.1016/j.msea.2018.05.092.

    Article  Google Scholar 

  20. DUMONT M, LEFEBVRE W, DOISNEAU-COTTIGNIES B, DESCHAMPS A. Characterization of the composition and volume fraction of η′ and η precipitates in an Al−Zn−Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy [J]. Acta Mater, 2005, 53: 2881–2892. DOI: https://doi.org/10.1016/j.actamat.2005.03.004.

    Article  Google Scholar 

  21. LIU Z F, LI X G, DU C W, ZHAI G L, CHENG Y F. Stress corrosion cracking behavior of X70 pipe steel in an acidic [J]. Corro Sci, 2008, 50: 2251–2257. DOI: https://doi.org/10.1016/j.corsci.2008.05.011.

    Article  Google Scholar 

  22. BERG L K, GJØNNES J, HANSEW V, LI X Z, KNUTSON M, WATERLOO G, SCHRYVERS D, WALLENBERG L R. GP-zones in Al-Zn-Mg alloys and their role in artificial ageing [J]. Acta Mater, 2001, 49: 3443–3451. DOI: https://doi.org/10.1016/S13596454(01)00251-8.

    Article  Google Scholar 

  23. GODARD D, ARCHAMBAULT P, AEBY-GAUTIER E, LAPASSET G. Precipitation sequences during quenching of the AA 7010 alloy [J]. Acta Mater, 2002, 50: 2319–2329. DOI: https://doi.org/10.1016/S13596454(02)00063-0.

    Article  Google Scholar 

  24. LIU Yan, JIANG Da-ming, LI Bing-qing, YING Tao, HU Jie. Heating aging behavior of Al−8.35Zn−2.5Mg−2.25Cu alloy [J]. Mater Des, 2014, 60: 116–124. DOI: https://doi.org/10.1016/j.matdes.2014.03.060.

    Article  Google Scholar 

  25. MEYERS M, CHAWLA K. Mechanical behavior of materials [M]. Second edition. New York: Cambridge University Press, 2009. DOI: https://doi.org/10.1016/S13697021(09)70086-0.

    MATH  Google Scholar 

  26. WEN Kai, FAN Yun-qiang, WANG Guo-jun, JIN Long-bin, LI Xi-wu, LI Zhi-hui, ZHANG Yong-an, XIONG Bai-qiang. Aging behavior and precipitate characterization of a high Zn-containing Al−Zn−Mg−Cu with various tempers [J]. Mater Des, 2016, 101: 16–23. DOI: https://doi.org/10.1016/j.matdes.2016.03.150.

    Article  Google Scholar 

  27. WEN Kai, XIONG Bai-qing, REN Wei-cai, TONG You-zhi, LI Xi-wu. Fe-rich particles influenced secondary crack characteristics in an Al−Zn−Mg−Cu alloy extrusion plate with high zinc content [J]. Scripta Mater, 2020, 186: 259–262. DOI: https://doi.org/10.1016/j.scriptamat.2020.05.045.

    Article  Google Scholar 

  28. LENG L, ZHANG Z J, DUAN Q Q, ZHANG P, ZHANG Z F. Improving the fatigue strength of 7075 alloy through aging [J]. Mater Sci Eng A, 2018, 738: 24–30. DOI: https://doi.org/10.1016/j.msea.2018.09.047.

    Article  Google Scholar 

  29. QIAN F, JIN S B, SHA G, LI Y J. Enhanced dispersoid precipitation and dispersion strengthening in an Al alloy by microalloying with Cd [J]. Acta Mater, 2018, 157: 114–125. DOI: https://doi.org/10.1016/j.actamat.2018.07.001.

    Article  Google Scholar 

  30. CHRISTPHER B M, DAVID C D, DAVID N S. Coarsening resistance at 400 °C of precipitation-strengthened Al−Zr−Sc−Er alloys [J]. Acta Mater, 2011, 59: 7029–7042. DOI: https://doi.org/10.1016/j.actamat.2011.07.057.

    Article  Google Scholar 

  31. DUMONT D, DESCHAMPS A, BRECHET Y. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy [J]. Mater Sci Eng A, 2003, 356: 326–336. DOI: https://doi.org/10.1016/S0921-5093(03)00145-X.

    Article  Google Scholar 

  32. HAN N M, ZHANG X M, LIU S D, HE D G, ZHANG R. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050 [J]. J Alloys Compd, 2011, 509: 4138–4145. DOI: https://doi.org/10.1016/j.jallcom.2011.01.005.

    Article  Google Scholar 

  33. CHEN Song-yi, CHEN Kuang-hua, DONG Peng-xuan, YE Sheng-ping, HUANG Lan-ping. Effect of heat treatment on stress corrosion cracking, fracture toughness and strength of 7085 aluminum alloy [J]. Trans Nonferrous Met Soc China, 2014, 24: 2320–2325. DOI: https://doi.org/10.1016/S1003-6326(14)63351-3.

    Article  Google Scholar 

  34. HAN Nian-mei, ZHANG Xin-ming, LIU Sheng-dan, KE Bin, XIN Xing. Effects of pre-stretching and ageing on the strength and fractur toughness of aluminum alloy 7050 [J]. Mater Sci Eng A, 2011, 528: 3714–3721. DOI: https://doi.org/10.1016/j.msea.2011.01.068.

    Article  Google Scholar 

  35. ALARCON O E, NAZAR A M M, MONTEIRO W A. The effect of microstructure on the mechanical behavior and fracture mechanism in a 7050-T6 aluminum alloy [J]. Mater Sci Eng A, 1991, 138: 275–285.

    Article  Google Scholar 

  36. SONG R G, DIETZEL W, ZHANG B J, LIU W J, TSENG M, ATRENS K A. Stress corrosion cracking and hydrogen embrittlement of an Al−Zn−Mg−Cu alloy [J]. Acta Mater, 2004, 52: 4727–4743. DOI: https://doi.org/10.1016/j.actamat.2004.06.023.

    Article  Google Scholar 

  37. NAJJAR D, MAGNIN T, WARNER T J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050- aluminum alloy [J]. Mater Sci Eng A, 1997, 238: 293–302. DOI: https://doi.org/10.1016/S09215093(97)00369-9.

    Article  Google Scholar 

  38. JIANG J T, XIAO W Q, YANG L, SHAO W Z, YUAN S J, ZHEN L. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al−Zn−Mg−Cu alloy [J]. Mater Sci Eng A, 2014, 605: 167–175. DOI: https://doi.org/10.1016/j.msea.2014.03.023.

    Article  Google Scholar 

  39. LIU Ya-ru, PAN Qing-lin, LI Hang, HUANG Zhi-qi, YE Ji, LI Meng-jia. Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment [J]. J Alloys Compd, 2019, 792: 32–45. DOI: https://doi.org/10.1016/j.jallcom.2019.03.324.

    Article  Google Scholar 

  40. ROUT P K, GHOSH M M, GHOSH K S. Microtructural, mechanical and electrochemical behavior of a 7017 Aljallcom.2011.01.005.Znjallcom.2011.01.005.Mg alloy of different tempers [J]. Mater Charact, 2015, 104: 49–60. DOI: https://doi.org/10.1016/j.matchar.2015.03.025.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Feng  (冯艳).

Additional information

Foundation item

Project(2017GK2261) supported by the Science and Technology Program of Hunan Province, China; Project (41423040204) supported by National Key Laboratory of Light Weight and High Strength Structural Materials Equipment Pre-research Laboratory Foundation, China

Contributors

The overarching research goals were developed by FENG Yan. The initial draft of the manuscript was written by WEI Shi-long and FENG Yan. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

WEI Shi-long, FENG Yan, ZHANG Hui, XU Chun-ting, WU Ying declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Sl., Feng, Y., Zhang, H. et al. Influence of aging on microstructure, mechanical properties and stress corrosion cracking of 7136 aluminum alloy. J. Cent. South Univ. 28, 2687–2700 (2021). https://doi.org/10.1007/s11771-021-4802-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4802-y

Key words

关键词

Navigation