Skip to main content
Log in

Static compressive properties and damage constitutive model of rubber cement mortar with dry- and wet-curing conditions

干、湿养护条件下橡胶水泥砂浆的静态压缩性能及损伤本构模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To investigate the static compressive properties and mechanical damage evolution of rubber cement-based materials (RCBMs) with dry- and wet-curing conditions, uniaxial compression and cyclic loading—unloading tests were carried out on rubber cement mortar (RCM). The mechanical properties of the uniaxial compression specimens cured at 95% (wet-curing) and 50% (dry-curing) relative humidities and cyclic loading—unloading specimens cured at wet-curing were analyzed. Under uniaxial compression, the peak stress loss ratio is higher for dry-curing than for wet-curing. The peak strain decreases with the increase of rubber content, and the peak strain increases with the decrease of curing humidity. Under cyclic loading—unloading, the variation trends of residual strain differences of the normal cement mortar and RCM at each cyclic level with the number of cycles are basically the same, but the failure modes are different. The analysis of the internal mesostructure by a scanning electron microscope (SEM) shows that initial damage is further enhanced by reducing curing humidity and adding rubber aggregate. The damage constitutive model based on strain equivalence principle and statistical theories was used to describe the uniaxial compression characteristics of RCM, and the law of mechanical damage evolution was predicted.

摘要

为了研究橡胶水泥基材料(RCBMs)在干、湿养护条件下的静态压缩性能及力学损伤演化,对橡胶水泥砂浆(RCM)进行了单轴压缩和循环加−卸载试验。 分析了在95% (湿润养护)和50% (干燥养护)相对湿度养护条件下单轴压缩试件和湿润养护下循环加−卸载试件的力学性能。 结果表明,在单轴压缩试验中,试件在干燥养护下的峰值应力损失率高于湿润养护的。 峰值应变随着橡胶含量的增加而减小,随着养护湿度的降低而增大。 在循环加−卸载试验下,普通水泥砂浆(NCM)和RCM 在各循环水平的残余应变差随循环次数的变化趋势基本相同,但两者的破坏模式不同。 对试件基体内部细观结构的SEM 观察表明,降低养护湿度和掺加橡胶骨料均进一步增大了水泥砂浆的初始损伤。 采用基于应变等效原理和统计理论建立损伤本构模型来描述RCM 的单轴压缩特征,有效表征和预测了力学损伤演化规律。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YOUSSF O, ELGAWADY M A, MILLS J E. Static cyclic behaviour of FRP-confined crumb rubber concrete columns [J]. Engineering Structures, 2016, 113: 371–387. DOI: https://doi.org/10.1016/j.engstruct.2016.01.033.

    Article  Google Scholar 

  2. LV Jing, ZHOU Tian-hua, DU Qiang, WU Han-heng. Effects of rubber particles on mechanical properties of lightweight aggregate concrete [J]. Construction and Building Materials, 2015, 91: 145–149. DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.038.

    Article  Google Scholar 

  3. RASHAD A M. A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials [J]. International Journal of Sustainable Built Environment, 2016, 5(1): 46–82. DOI: https://doi.org/10.1016/j.ijsbe.2015.11.003.

    Article  MathSciNet  Google Scholar 

  4. SIDDIKA A, MAMUN M A A, ALYOUSEF R, AMRAN Y H M, ASLANI F, ALABDULJABBAR H. Properties and utilizations of waste tire rubber in concrete: A review [J]. Construction and Building Materials, 2019, 224: 711–731. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.108.

    Article  Google Scholar 

  5. GONEN T. Freezing-thawing and impact resistance of concretes containing waste crumb rubbers [J]. Construction and Building Materials, 2018, 177: 436–442. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.105.

    Article  Google Scholar 

  6. STRUKAR K, SIPOS T K, MILICEVIC I, BUSIC R. Potential use of rubber as aggregate in structural reinforced concrete element—A review [J]. Engineering Structures, 2019, 188: 452–468. DOI: https://doi.org/10.1016/j.engstruct.2019.03.031.

    Article  Google Scholar 

  7. XUE J, SHINOZUKA M. Rubberized concrete: A green structural material with enhanced energy-dissipation capability [J]. Construction and Building Materials, 2013, 42: 196–204. DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.005.

    Article  Google Scholar 

  8. YANG Fei, FENG Wan-hui, LIU Feng, JING Lin, YUAN Bing, CHEN De. Experimental and numerical study of rubber concrete slabs with steel reinforcement under close-in blast loading [J]. Construction and Building Materials, 2019, 198: 423–436. DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.248.

    Article  Google Scholar 

  9. ASLANI F, MA G W, WAN D L Y, MUSELIN G. Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules [J]. Journal of Cleaner Production, 2018, 182: 553–566. DOI: https://doi.org/10.1016/j.jclepro.2018.02.074.

    Article  Google Scholar 

  10. LIU Feng, MENG Liang-yu, NING Guo-fang, LI Li-juan. Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement [J]. Construction and Building Materials, 2015, 95: 207–217. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.042.

    Article  Google Scholar 

  11. THOMAS B S, GUPTA R C, KALLA P, CSETENEYI L. Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates [J]. Construction and Building Materials, 2014, 59: 204–212. DOI: https://doi.org/10.1016/j.conbuildmat.2014.01.074.

    Article  Google Scholar 

  12. TURATSINZE A, GARROS M. On the modulus of elasticity and strain capacity of self-compacting concrete incorporating rubber aggregates [J]. Resources, Conservation and Recycling, 2008, 52(10): 1209–1215. DOI: https://doi.org/10.1016/j.resconrec.2008.06.012.

    Article  Google Scholar 

  13. ZHANG Hai-bo, GUAN Xue-mao, GOU Mi-feng, LIU Xiao-xing. Influence of rubber aggregate on pore structure of cement mortar [J]. Materials Reports, 2013, 27(7): 126–133. DOI: https://doi.org/10.3969/j.issn.1005-023X.2013.14.034. (in Chinese)

    Google Scholar 

  14. ZHU Han, WANG Zhong-jian, XU Jie, HAN Qing-hua. Microporous structures and compressive strength of highperformance rubber concrete with internal curing agent [J]. Construction and Building Materials, 2019, 215: 128–134. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.184.

    Article  Google Scholar 

  15. GUO Qi, ZHANG Ru-yi, LUO Qi-rui, WU Han, SUN Hu-ping, YE Yi. Prediction on damage evolution of recycled crumb rubber concrete using quantitative cloud imagine correlation [J]. Construction and Building Materials, 2019, 209: 340–353. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.115.

    Article  Google Scholar 

  16. APARICIO S, MARTINEZ-RAMIREZ S, MOLEROARMENTA M, FUENTE J V, HERNANDEZ M G. The effect of curing relative humidity on the microstructure of self-compacting concrete [J]. Construction and Building Materials, 2016, 104: 154–159. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.057.

    Article  Google Scholar 

  17. MI Zheng-xiang, HU Yu, LI Qing-bin, AN Zai-zhan. Effect of curing humidity on the fracture properties of concrete [J]. Construction and Building Materials, 2018, 169: 403–413. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.025.

    Article  Google Scholar 

  18. ATIS C D, OZCAN F, KILIC A, KARAHAN O, BILIM C, SEVERCAN M H. Influence of dry and wet curing conditions on compressive strength of silica fume concrete [J]. Building and Environment, 2005, 40(12): 1678–1683. DOI: https://doi.org/10.1016/j.buildenv.2004.12.005.

    Article  Google Scholar 

  19. LUO Da-ming NIU Di-tao. Influences of water-to-cement ratio and curing condition on water absorption of internal curing concrete [J]. Journal of Building Structures, 2019, 40(1): 165–173. DOI: https://doi.org/10.14006/j.jzjgxb.2019.01.019. (in Chinese)

    Google Scholar 

  20. MI Zheng-xiang, HU Yu, LI Qing-bin, GAO Xiao-feng, YIN Tao. Maturity model for fracture properties of concrete considering coupling effect of curing temperature and humidity [J]. Construction and Building Materials, 2019, 196: 1–13. DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.127.

    Article  Google Scholar 

  21. SHEN De-jian, WANG Ming-liang, CHEN Ying, WANG Tao, ZHANG Jin-Yang. Prediction model for relative humidity of early-age internally cured concrete with pre-wetted lightweight aggregates [J]. Construction and Building Materials, 2017, 144: 717–727. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.088.

    Article  Google Scholar 

  22. LYU Zheng-hua, GUO Yin-chuan, CHEN Zhi-hui, SHEN Ai-qin, QIN Xiao, YANG Jing-yu, ZHAO Ming, WANG Zhen-long. Research on shrinkage development and fracture properties of internal curing pavement concrete based on humidity compensation [J]. Construction and Building Materials, 2019, 203: 417–431. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.115.

    Article  Google Scholar 

  23. LI Li-juan, RUAN Sheng-hua, ZENG Lan. Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles [J]. Construction and Building Materials, 2014, 70: 291–308. DOI: https://doi.org/10.1016/j.conbuildmat.2014.07.105.

    Article  Google Scholar 

  24. WANG Su-sheng, XU Wei-ya, YANG Lan-lan. Experimental and elastoplastic model investigation on brittle-ductile transition and hydro-mechanical behaviors of cement mortar [J]. Construction and Building Materials, 2019, 224: 19–28. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.046.

    Article  Google Scholar 

  25. XU Ying, YANG Rong-zhou. Dynamic mechanics and damage evolution characteristics of rubber cement mortar under different curing humidity levels [J]. Journal of Materials in Civil Engineering, 2020, 32(10). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003351.

  26. YANG Rong-zhou, XU Ying, CHEN Pei-yuan, GE Jin-jin. Compressive rupture and energy evolution characteristics of rubber fine aggregate cement mortar under dry and wet curing conditions [J]. Materials Reports, 2020, 34(4): 4049–4055. DOI: https://doi.org/10.11896/cldb.18120117. (in Chinese)

    Google Scholar 

  27. YANG Lin-hu, ZHU Han, ZHANG Ya-mei. Effect of crumb rubber on pore structure of cement mortar [J]. Journal of Tianjin University, 2011, 44(12): 1083–1087. (in Chinese)

    Google Scholar 

  28. JGJ/T 70-2009. Standard for test method of basic properties of construction mortar [S]. (in Chinese)

  29. LI Dong, JIN Liu, DU Xiu-li, LIU Jing-bo. Determination of intergranular and transgranular failure of mesoscale model concrete under mode-I fracture [J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102551. DOI: https://doi.org/10.1016/j.tafmec.2020.102551.

    Article  Google Scholar 

  30. SAMOUH H, ROZIÈERE E, LOUKILI A. Experimental and numerical study of the relative humidity effect on drying shrinkage and cracking of self-consolidating concrete [J]. Cement and Concrete Research, 2019, 115: 519–529. DOI: https://doi.org/10.1016/j.cemconres.2018.08.008.

    Article  Google Scholar 

  31. LI Yang, ZHANG Xu, WANG Rui-jun, LEI Yan. Performance enhancement of rubberised concrete via surface modification of rubber: A review [J]. Construction and Building Materials, 2019, 227: 116691. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116691.

    Article  Google Scholar 

  32. DING Qing-jun, LI Jin-hui, GENG Xue-fei, ZHAO Ming-yu. Mechanism of enhancing anti-abrasion performance of ultrahigh-performance concrete via rubber particles [J]. Journal of the Chinese Ceramic Society, 2020, 48(10): 1–8. DOI: https://doi.org/10.14062/j.issn.0454-5648.20200247. (in Chinese)

    Google Scholar 

  33. ABDELMONEM A, EL-FEKY M S, NASR E S A R, KOHAIL M. Performance of high strength concrete containing recycled rubber [J]. Construction and Building Materials, 2019, 227: 116660. DOI: https://doi.org/10.1016/j.conbuildmat.2019.08.041.

    Article  Google Scholar 

  34. HOU Yun-fen. Cementitious material [M]. Beijing: China Electric Power Press, 2012. (in Chinese)

    Google Scholar 

  35. LONG Guang-cheng, LIU He, MA Kun-lin, XIE You-jun. Uniaxial compression damage constitutive model of concrete subjected to freezing and thawing [J]. Journal of Central South University (Science and Technology), 2018, 49(8): 1884–1892. DOI: https://doi.org/10.11817/j.issn.1672-7207.2018.08.007. (in Chinese)

    Google Scholar 

  36. LEMAITRE J. How to use damage mechanics [J]. Nuclear Engineering and Design, 1984, 80(2): 233–245. DOI: https://doi.org/10.1016/0029-5493(84)90169-9.

    Article  Google Scholar 

  37. LEMAITRE J. Local approach of fracture [J]. Engineering Fracture Mechanics, 1986, 25(5, 6): 523–537. DOI: https://doi.org/10.1016/0013-7944(86)90021-4.

    Article  Google Scholar 

  38. ARSON C. Generalized stress variables in continuum damage mechanics [J]. Mechanics Research Communications, 2014, 60: 81–84. DOI: https://doi.org/10.1016/j.mechrescom.2014.06.006.

    Article  Google Scholar 

  39. SAKIN R, AY İ. Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites [J]. Materials & Design, 2008, 29(6): 1170–1181. DOI: https://doi.org/10.1016/j.matdes.2007.05.005.

    Article  Google Scholar 

  40. CORREIA J, APETRE N, ARCARI A, JESUS A D, MUNIZCALVENTE M, CALCADA R, BERTO F, FERNANDEZCANTELI A. Generalized probabilistic model allowing for various fatigue damage variables [J]. International Journal of Fatigue, 2017, 100(1): 187–194. DOI: https://doi.org/10.1016/j.ijfatigue.2017.03.031.

    Article  Google Scholar 

  41. HAIDYRAH A S, NEWKIRK J W, CASTANO C H. Weibull statistical analysis of Krouse type bending fatigue of nuclear materials [J]. Journal of Nuclear Materials, 2016, 470: 244–250. DOI: https://doi.org/10.1016/j.jnucmat.2015.12.016.

    Article  Google Scholar 

  42. XU Ying, LI Cheng-jie, ZHENG Qiang-qiang, NI Xian, WANG Qian-qian. Analysis of energy evolution and damage characteristics of mudstone under cyclic loading and unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2084–2091. DOI: https://doi.org/10.13722/j.cnki.jrme.2019.0153. (in Chinese)

    Google Scholar 

  43. KURUMATANI M, TERADA K, KATO J, KYOYA T, KASHIYAMA K. An isotropic damage model based on fracture mechanics for concrete [J]. Engineering Fracture Mechanics, 2016, 155: 49–66. DOI: https://doi.org/10.1016/j.engfracmech.2016.01.020.

    Article  Google Scholar 

  44. WANG Qian-feng. Study on dynamic damage characteristics of steel fiber reinforced concrete [D]. Yichang: Three Gorges University, 2009. DOI: https://doi.org/10.7666/d.d066359. (in Chinese)

    Google Scholar 

Download references

Funding

Projects(52008003, 52074009) supported by the National Natural Science Foundation of China; Project(201904a07020081) supported by the Key Research and Development Program Project of Anhui Province, China; Project(1908085QE213) supported by the Nature Science Foundation of Anhui Province, China

Author information

Authors and Affiliations

Authors

Contributions

The overall research direction and goal were jointly put forward by YANG Rong-zhou, XU Ying, and CHEN Pei-yuan. The experiment was carried out jointly by YANG Rong-zhou and GONG Jiu. YANG Rong-zhou analysed the experimental data, put forward and established the idea and model to characterize the damage of the sample, and completed the writing of the manuscript. XU Ying and CHEN Pei-yuan revised and improved the manuscript constructively. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Ying Xu  (徐颖).

Additional information

Conflict of interest

YANG Rong-zhou, XU Ying, CHEN Pei-yuan, and GONG Jiu declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Rz., Xu, Y., Chen, Py. et al. Static compressive properties and damage constitutive model of rubber cement mortar with dry- and wet-curing conditions. J. Cent. South Univ. 28, 2158–2178 (2021). https://doi.org/10.1007/s11771-021-4763-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4763-1

Key words

关键词

Navigation