Skip to main content
Log in

Experimental study on bond behavior between BFRP bars and seawater sea-sand concrete

BFRP 筋与海水海砂混凝土黏结性能的试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Combining fiber reinforced polymer (FRP) with seawater sea-sand concrete (SSC) can solve the shortage of river sand that will be used for marine engineering construction. The bond performance of BFRP bars and SSC specimens is researched by pull-out test in this paper. The effects of the parameters, such as bar type, bar diameter, concrete type and stirrup restraint, are considered. It is beneficial to the bonding performance by the reduction of bar diameter. The utilization of seawater sea-sand has a low influence on the bond properties of concrete. The bond strength of BFRP is slightly lower than the steel rebar, but the difference is relatively small. The failure mode of the specimen can be changed and the interfacial bond stress can be improved by stirrups restraint. The bond-slip curves of BFRP ribbed rebar include micro slip stage, slip stage, descent stage and residual stage. The bond stress shows the cycle attenuation pattern of sine in the residual stage. In addition, the bond-slip model of BFRP and SSC is obtained according to the experimental results and related literature, while the predicted curve is also consistent well with the measured curve.

摘要

纤维增强聚合物材料(FRP)与海水海砂混凝土(SSC)结合可以解决海洋工程建设中的河砂短缺问题。 本文通过拉拔试验研究了BFRP 筋与海水海砂混凝土的粘结性能。 考虑了筋材类型、筋材直径、混凝土类型和箍筋约束等参数的影响。 减小筋材直径有利于提高粘结性能,海水海砂的利用对混凝土的粘结性能影响不大,BFRP 的粘结强度比钢筋略低,但差别较小。 箍筋约束可以改变试件的破坏模式并在一定程度上提高界面粘结应力。 带肋BFRP 筋的粘结-滑移曲线包括微滑阶段、滑移阶段、下降阶段和残余阶段,且残余阶段粘结应力呈正弦式循环衰减形式。 此外,基于实验结果和相关文献得到了BFRP 筋和海水海砂混凝土的粘结滑移模型,预测的曲线与实测曲线有很好的一致性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MOHAMMED T U, HAMADA H, YAMAFJI T. Performance of seawater-mixed concrete in the tidal environment [J]. Cement and Concrete Research, 2004, 34(4): 593–601. DOI: https://doi.org/10.1016/j.cemconres.2003.09.020.

    Article  Google Scholar 

  2. XIAO J, QIANG C, NANNI A. Use of sea sand and seawater in concrete construction: Current status and future opportunities [J]. Construction and Building Materials, 2017, 155(11): 1101–1111. DOI: https://doi.org/10.1016/j.conbuildmat.2017.08.130.

    Article  Google Scholar 

  3. ROBERT M, BENMOKRANE B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars [J]. Construction and Building Materials, 2013, 38(1): 274–284. DOI: https://doi.org/10.1016/j.conbuildmat.2012.08.021.

    Article  Google Scholar 

  4. HASANZADE-INALLU A, ZARFAM P, NIKOO M. Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP [J]. Journal of Central South University, 2019, 26(11): 3156–3174. DOI: https://doi.org/10.1007/s11771-019-4243-z.

    Article  Google Scholar 

  5. SOONG W H, RAGHAVAN J, RIZKALLA S H. Fundamental mechanisms of bonding of glass fiber reinforced polymer reinforcement to concrete [J]. Construction and Building Materials, 2011, 25(6): 2813–2821. DOI: https://doi.org/10.1016/j.conbuildmat.2010.12.054.

    Article  Google Scholar 

  6. ARIAS J, VAZQUEZ A, ESCOBAR M M. Use of sand coating to improve bonding between GFRP bars and concrete [J]. Journal of Composite Materials, 2012, 46(18): 2271–2278. DOI: https://doi.org/10.1177/0021998311431994.

    Article  Google Scholar 

  7. YANG Qi-fei, LU Xiao-hua, XIONG Guang-jing. Double pull specimen more suitable for measuring bond-slip relationship of FRP-to-concrete interface [J]. Journal of Central South University of Technology, 2010, 17(2): 400–405. DOI: https://doi.org/10.1007/s11771-010-0059-6.

    Article  Google Scholar 

  8. REFAI A E, AMMAR M A, MASMOUDI R. Bond performance of basalt fiber-reinforced polymer bars to concrete [J]. Journal of Composites for Construction, 2015, 19(3): 04014050.1. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000487.

    Article  Google Scholar 

  9. ROLLAND A, QUIERTANT M, KHADOUR A. Experimental investigations on the bond behavior between concrete and FRP reinforcing bars [J]. Construction and Building Materials, 2018, 173(1): 136–148. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.169.

    Article  Google Scholar 

  10. GU Xing-yu, YU Bin, WU Ming. Experimental study of the bond performance and mechanical response of GFRP reinforced concrete [J]. Construction and Building Materials, 2016, 114(1): 407–415. DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.211.

    Article  Google Scholar 

  11. MAZAHERIPOUR H, BARROS J, SENA-CRUZ J M. Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete [J]. Composite Structures, 2013, 95: 202–212. DOI: https://doi.org/10.1016/j.compstruct.2012.07.009.

    Article  Google Scholar 

  12. ALTALMAS A, REFAI A E, ABED F. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions [J]. Construction and Building Materials, 2015, 81: 162–171. DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.036.

    Article  Google Scholar 

  13. REN Zhen-hua, LIU Han-long, ZHOU Feng-jun. Double linear strain distribution assumption of RC beam strengthened with external-bonded or near-surface mounted fiber reinforced plastic [J]. Journal of Central South University, 2012, 19(12): 3582–3594. DOI: https://doi.org/10.1007/s11771-012-1446-y.

    Article  Google Scholar 

  14. ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations [R]. Calif: College of Engineering, University of California, 1982.

    Google Scholar 

  15. COSENZA E, MANFREDI G, REALFONZO R. Analytical modelling of bond between FRP reinforcing bars and concrete [C]// TAERWE L. Proc 2nd Int RILEM Symp (FRPRCS-2), 1995: 164–171.

  16. COSENZA E, MANFREDI G, REALFONZO R. Behavior and Modeling of Bond of FRP Rebars to Concrete [J]. Journal of Composites for Construction, 1997, 1(2): 40–51. DOI: https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(40).

    Article  Google Scholar 

  17. GAO Dan-ying. The constitutive models for bond slip relation between FRP rebars and concrete [J]. Industrial Construction, 2003, 33(7): 41–43. (in Chinese)

    Google Scholar 

  18. HAO Qing-duo, WANG Yan-lei, HOU Ji-lin. Bond-slip constitutive model between GFRP/steel wire composite rebars and concrete [J]. Engineering Mechanics, 2009, 26(5): 62–72. (in Chinese)

    Google Scholar 

  19. DONG Zhi-qiang, WU Gang, ZHU Hong. Mechanical properties of seawater sea-sand concrete reinforced with discrete BFRP-Needles [J]. Construction and Building Materials, 2019, 206(5): 432–441. DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.029.

    Article  Google Scholar 

  20. LI Li-juan, HOU Bin, LU Zhong-yu. Fatigue behavior of sea sand concrete beams reinforced with basalt fiber-reinforced polymer bars [J]. Construction and Building Materials, 2018, 179(8): 160–171. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.218.

    Article  Google Scholar 

  21. LI Y L, TENG J G, ZHAO X L. Theoretical model for seawater and sea sand concrete-filled circular FRP tubular stub columns under axial compression [J]. Engineering Structures, 2018, 160: 71–84. DOI: https://doi.org/10.1016/j.engstruct.2018.01.017.

    Article  Google Scholar 

  22. ZHANG Qing-tian, XIAO Jian-zhuang, LIAO Qing-xiang. Structural behavior of seawater sea-sand concrete shear wall reinforced with GFRP bars [J]. Engineering Structures, 2019, 189(1): 458–470. DOI: https://doi.org/10.1016/j.engstruct.2019.03.101.

    Article  Google Scholar 

  23. DONG Zhi-qiang, WU Gang, ZHAO Xiao-ling. Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars [J]. Construction and Building Materials, 2018, 19(12): 671–682. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.166.

    Article  Google Scholar 

  24. XIAO Jian-zhuang, LIAO Qing-xiang, ZHANG Qing-tian. Bond behavior between seawater sea-sand recycled aggregate concrete and glass-fiber-reinforced polymer bars [J]. Journal of Tongji University (Natural science), 2018, 46(7): 884–890, 971. (in Chinese)

    Google Scholar 

  25. XU Jin-jin, YANG Shu-tong, LIU Zhi-ning. Study on the bond performance between CFRP bars and alkali-activated slag seawater and sea sand concrete [J]. Engineering Mechanics, 2019, 36(S1): 175–183. (in Chinese)

    Google Scholar 

  26. DONG Zhi-qiang, WU Gang, ZHAO Xiao-ling. Long-term bond durability of fiber-reinforced polymer bars embedded in seawater sea-sand concrete under ocean environments [J]. Journal of Composites for Construction, 2018, 22(5): 04018042.1. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000876.

    Article  Google Scholar 

  27. DONG Zhi-qiang, WU Gang, ZHAO Xiao-ling. Bond durability of steel-FRP composite bars embedded in seawater sea-sand concrete under constant bending and shearing stress [J]. Construction and Building Materials, 2018, 192(12): 808–817. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.154.

    Article  Google Scholar 

  28. ASTM-11a. Standard test method for tensile properties of fiber-reinforced polymer matrix composite bars [S]. ASTM D7205, West Conshohocken, PA, 2011.

    Google Scholar 

  29. ASTM D1141-98(13). Standard practice for the preparation of substitute ocean water [S]. West Conshohocken: ASTM International, 2008.

    Google Scholar 

  30. ACI Committee 440.3R-12. Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures [S]. American Concrete Institute, 2012.

  31. GB/T50152-2012. Standard for test methods of concrete structures [S]. China Academy of Building Science, 2012. (in Chinese)

  32. FIRAS S A, GILLES F, ROBERT L R. Bond between carbon bre-reinforced polymer (CFRP) bars and ultra high performance bre reinforced concrete (UHPFRC): Experimental study [J]. Construction and Building Materials, 2011, 25(2): 479–485. DOI: https://doi.org/10.1016/j.conbuildmat.2010.02.006.

    Article  Google Scholar 

  33. YANG Shu-tong, YANG Chao, HUANG Mei-lin, LIU Yang, JIANG Ji-tong, FAN Guo-xi. Study on bond performance between FRP bars and seawater coral aggregate concrete [J]. Construction and Building Materials, 2018, 173(6): 272–288. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.015.

    Article  Google Scholar 

  34. YANG E I, YI S T, LEEM Y M. Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties [J]. Cement and Concrete Research, 2005, 35(11): 2175–2182. DOI: https://doi.org/10.1016/j.cemconres.2005.03.016.

    Article  Google Scholar 

  35. RICHARDSON A E, FULLER T. Sea shells used as partial aggregate replacement in concrete [J]. Structural Survey, 2013, 31(5): 347–354. DOI: https://doi.org/10.1108/SS-12-2012-0041.

    Article  Google Scholar 

Download references

Funding

Project(BE2019642) supported by the Jiangsu Provincial Key Research and Development Program, China

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by SU Xun, YIN Shi-ping, ZHAO Ying-de, and HUA Yun-tao. SU Xun and YIN Shi-ping provided the measured landslides displacement data, and analyzed the measured data. SU Xun, YIN Shi-ping, and ZHAO Ying-de established the models and calculated the predicted displacement. SU Xun and HUA Yun-tao analyzed the calculated results. The initial draft of the manuscript was written by SU Xun, YIN Shi-ping, ZHAO Ying-de, and HUA Yun-tao. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Shi-ping Yin  (尹世平).

Additional information

Conflict of interest

SU Xun, YIN Shi-ping, ZHAO Ying-de, and HUA Yun-tao declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Yin, Sp., Zhao, Yd. et al. Experimental study on bond behavior between BFRP bars and seawater sea-sand concrete. J. Cent. South Univ. 28, 2193–2205 (2021). https://doi.org/10.1007/s11771-021-4762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4762-2

Key words

关键词

Navigation