Skip to main content
Log in

A new low-bandgap polymer acceptor based on benzotriazole for efficient all-polymer solar cells

苯并三氮唑基窄带隙聚合物受体用于高效全聚合物太阳电池

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The rational design of polymer acceptors with strong and broad absorption is critical to improve photovoltaic performance. In this work, a new polymer acceptor PY9-T based on heptacyclic benzotriazole (Y9-C16) as a building block and thiophene unit as the linking unit was synthesized, which exhibited a low bandgap (1.37 eV) and a high extinction coefficient of the neat film (1.44×105 cm−1). When PY9-T was blended with the wide bandgap polymer donor PBDB-T, the all-polymer solar cells (APSCs) showed a high power conversion efficiency (PCE) of 10.45% with both high open circuit voltage of 0.881 V and short-circuit current density of 19.82 mA/cm2. In addition, APSCs based on PY9-T show good thermal stability, as evidenced by slight changes morphologies when annealed at 100 °C. These results suggest that Y9-C16 provides a new building block to develop efficient and stable polymer acceptors.

摘要

合理设计具有强和宽吸收的聚合物受体有助于提高光伏性能。本文以七环苯并三氮唑(Y9-C16) 为构筑单元,噻吩为连接单元合成一个新型聚合物受体材料PY9-T。该受体材料的薄膜具有较低的带 隙(1.37 eV)和较高的消光系数(1.44×105 cm−1)。当PY9-T 与宽带隙聚合物给体PBDB-T 共混时,制备 全聚合物太阳电池(APSC)实现10.45%的高能量转换效率,器件具有0.881 V 的高开路电压和 19.82 mA/cm2 的高短路电流密度。此外,器件在100 °C 退火后,共混膜形貌仅发生微小的变化,表明 APSC 具有好的热稳定性,Y9-C16 为开发高效稳定的聚合物受体提供了新的构筑单元。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YU Gang, GAO J, HUMMELEN J C, WUDI F, HEEGER A J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science, 1995, 270(5243): 1789–1791. DOI: https://doi.org/10.1126/science.270.5243.1789.

    Article  Google Scholar 

  2. HALLS J J M, PICHLER K, FRIEND R H, MORATTI S C, HOLMES A B. Exciton dissociation at a poly (p-phenylenevinylene)/CeO heterojunction [J]. Synthetic Metals, 1996, 77(1–3): 277–280. DOI: https://doi.org/10.1016/0379-6779(96)80102-0.

    Article  Google Scholar 

  3. LI Yong-fang, ZOU Ying-ping. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility [J]. Advanced Materials, 2008, 20(15): 2952–2958. DOI: https://doi.org/10.1002/adma.200800606.

    Article  Google Scholar 

  4. LI Chen, LIU Miao-yin, PSCHIRER N G, BAUMGARTEN M, MÜLLEN K. Polyphenylene-based materials for organic photovoltaics [J]. Chemical Reviews, 2010, 110(11): 6817–6856. DOI: https://doi.org/10.1021/cr100052z.

    Article  Google Scholar 

  5. ZHANG Zhi-guo, YANG Yan-kang, YAO Jia, XUE Ling-wei, CHEN Shan-shan, LI Xiao-jun, MORRISON W, YANG Chang-duk, LI Yong-fang. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance allpolymer solar cells [J]. Angewandte Chemie International Edition, 2017, 56: 13503–13507. DOI: https://doi.org/10.1002/anie.201707678.

    Article  Google Scholar 

  6. ZHANG Zhi-guo, LI Yong-fang. Polymerized small molecule acceptors for high performance all-polymer solar cells [J]. Angewandte Chemie International Edition, 2020, 60(9): 2–14. DOI: https://doi.org/10.1002/anie.202009666.

    Google Scholar 

  7. WANG Gang, MELKONYAN F S, FACCHETTI A, MARKS T J. All-polymer solar cells: Recent progress, challenges, and prospects [J]. Angewandte Chemie International Edition, 2019, 58(13): 4129–4142. DOI: https://doi.org/10.1002/anie.201808976.

    Article  Google Scholar 

  8. DUAN Chun-hui, DING Li-ming. The new era for organic solar cells: Polymer donors [J]. Science Bulletin, 2020, 65(17): 1422–1424. DOI: https://doi.org/10.1016/j.scib.2020.04.044.

    Article  Google Scholar 

  9. LI Zhao-jun, XU Xiao-feng, ZHANG Wei, MENG Xiang-yi, MA Wei, YARTSEV A, INGANÄS O, ANDERSSON M R, JANSSEN R A J, WANG Er-gang. High performance allpolymer solar cells by synergistic effects of fine-tuned crystallinity and solvent annealing [J]. Journal of the American Chemical Society, 2016, 138(34): 10935–10944. DOI: https://doi.org/10.1021/jacs.6b04822.

    Article  Google Scholar 

  10. ZHOU Liu-yang, HE Xuan, LAU T K, QIU Bei-bei, WANG Tao, LU Xin-hui, LUSZCZYNSKA B, ULANSKI J, XU Shu-tao, CHEN Guo-hui, YUAN Jun, ZHANG Zhi-guo, LI Yong-fang, ZOU Ying-ping. Nonhalogenated solvent-processed all-polymer solar cells over 7.4% efficiency from quinoxaline-based polymers [J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41318–41325. DOI: https://doi.org/10.1021/acsami.8b13949.

    Article  Google Scholar 

  11. YANG Jing, XIAO Bo, TANG Ai-ling, LI Jian-feng, WANG Xiao-chen, ZHOU Er-jun. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications [J]. Advanced Materials, 2019, 31(45): 1804699. DOI: https://doi.org/10.1002/adma.201804699.

    Article  Google Scholar 

  12. WU Jing-nan, MENG Yuan, GUO Xia, ZHU Lei, LIU Feng, ZHANG Mao-jie. All-polymer solar cells based on a novel narrow-bandgap polymer acceptor with power conversion efficiency over 10% [J]. Journal of Materials Chemistry A, 2019, 7(27): 16190–16196. DOI: https://doi.org/10.1039/c9ta04611a.

    Article  Google Scholar 

  13. YAO Hua-tong, BAI Fu-jin, HU Hua-wei, ARUNAGIRI L, ZHANG Jian-quan, CHEN Yu-zhong, YU Han, CHEN Shang-shang, LIU Tao, LAI J Y L, ZOU Ying-ping, ADE H, YAN He. Efficient all-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency [J]. ACS Energy Letters, 2019, 4(2): 417–422. DOI: https://doi.org/10.1021/acsenergylett.8b02114.

    Article  Google Scholar 

  14. FAN Qun-ping, AN Qiao-shi, LIN Yuan-bao, XIA Yu-xin, LI Qian, ZHANG Ming, SU Wen-yan, PENG Wen-hong, ZHANG Chun-feng, LIU Feng, HOU Lin-tao, ZHU Wei-guo, YU Dong-hong, XIAO Min, MOONS E, ZHANG Fu-jun, ANTHOPOULOS T D, INGANÄS O, WANG Er-gang. Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation [J]. Energy & Environmental Science, 2020, 13(12): 5017–5027. DOI: https://doi.org/10.1039/D0EE01828G.

    Article  Google Scholar 

  15. SUN Hui-liang, YU Han, SHI Yong-qiang, YU Jian-wei, PENG Zhong-xiang, ZHANG Xian-he, LIU Bin, WANG Junwei, SINGH R, LEE J, LI Yong-chun, WEI Zi-xiang, LIAO Qiao-gan, KAN Zhi-peng, YE Long, YAN He, GAO Feng, GUO Xu-gang. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells [J]. Advanced Materials, 2020, 32(43): 2004183. DOI: https://doi.org/10.1002/adma.202004183.

    Article  Google Scholar 

  16. YUAN Jun, ZHANG Yun-qiang, ZHOU Liu-yang, ZHANG Gui-chuan, YIP H L, LAU T K, LU Xin-hui, ZHU Can, PENG Hong-jian, JOHNSON P A, LECLERC M, CAO Yong, ULANSKI J, LI Yong-fang, ZOU Ying-ping. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core [J]. Joule, 2019, 3(4): 1140–1151. DOI: https://doi.org/10.1016/j.joule.2019.01.004.

    Article  Google Scholar 

  17. FENG Liu-liu, YUAN Jun, ZHANG Zhen-zhen, PENG Hong-jian, ZHANG Zhi-Guo, XU Shu-tao, LIU Ye, LI Yong-fang, ZOU Ying-ping. Thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics [J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31985–31992. DOI: https://doi.org/10.1021/acsami.7b10995.

    Article  Google Scholar 

  18. LIU Sha, YUAN Jun, DENG Wan-yuan, LUO Mei, XIE Yuan, LIANG Quan-bin, ZOU Ying-ping, HE Zhi-cai, WU Hongbin, CAO Yong. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder [J]. Nature Photonics, 2020, 14(5): 300–305. DOI: https://doi.org/10.1038/s41566-019-0573-5.

    Article  Google Scholar 

  19. YUAN Jun, ZHANG Yun-qiang, ZHOU Liu-yang, ZHANG Chu-jun, LAU T K, ZHANG Gui-chuan, LU Xin-hui, YIP H L, SO S K, BEAUPRE S, MAINVILLE M, JOHNSON P A, LECLERC M, CHEN Hong-gang, PENG Hong-jian, LI Yong-fang, ZOU Ying-ping. Fused Benzothiadiazole: A building block for n-type organic acceptor to achieve highperformance organic solar cells [J]. Advanced Materials, 2019, 31(17): 1807577. DOI: https://doi.org/10.1002/adma.201807577.

    Article  Google Scholar 

  20. JIANG Kui, WEI Qing-ya, LAI J Y L, PENG Zheng-xing, KIM H K, YUAN Jun, YE Long, ADE H, ZOU Ying-ping, YAN He. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells [J]. Joule, 2019, 3(12): 3020–3033. DOI: https://doi.org/10.1016/j.joule.2019.09.010.

    Article  Google Scholar 

  21. WEI Qing-ya, LIU Wei, LECLERC M, YUAN Jun, CHEN Hong-gang, ZOU Ying-ping. A-DA’D-A non-fullerene acceptors for high-performance organic solar cells [J]. Science China Chemistry, 2020, 63(10): 1352–1366. DOI: https://doi.org/10.1007/s11426-020-9799-4.

    Article  Google Scholar 

  22. CAO Rui, CHEN Yu, CAI Fang-fang, CHEN Hong-gang, LIU Wei, GUAN Hui-lan, WEI Qing-ya, LI Jing, CHANG Qin, LI Zhe, ZOU Ying-ping. A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency [J]. Journal of Central South University, 2020, 27(12): 3581–3593. DOI: https://doi.org/10.1007/s11771-020-4501-0.

    Article  Google Scholar 

  23. JIA Tao, ZHANG Jia-bin, ZHONG Wen-kai, LIANG Yuanying, ZHANG Kai, DONG Sheng, YING Lei, LIU Feng, WANG Xiao-hui, HUANG Fei, CAO Yong. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor [J]. Nano Energy, 2020, 72: 104718. DOI: https://doi.org/10.1016/j.nanoen.2020.104718.

    Article  Google Scholar 

  24. LUO Mei, ZHOU Liu-yang, YUAN Jun, ZHU Can, CAI Fang-fang, HAI Jie-feng, ZOU Ying-ping. A new nonfullerene acceptor based on the heptacyclic benzotriazole unit for efficient organic solar cells [J]. Journal of Energy Chemistry, 2020, 42: 169–173. DOI: https://doi.org/10.1016/j.jechem.2019.07.002.

    Article  Google Scholar 

  25. YUAN Jun, ZHANG Huo-tian, ZHANG Rui, WANG Yu-ming, HOU Jian-hui, LECLERC M, ZHAN Xiao-wei, HUANG Fei, GAO Feng, ZOU Ying-ping. Reducing voltage losses in the A-DA’D-A acceptor-based organic solar cells [J]. Chem, 2020, 6(9): 2147–2161. DOI: https://doi.org/10.1016/j.chempr.2020.08.003.

    Article  Google Scholar 

  26. ZHOU Hua-xing, YANG Li-qiang, YOU Wei. Rational design of high performance conjugated polymers for organic solar cells [J]. Macromolecules, 2012, 45(2): 607–632. DOI: https://doi.org/10.1021/ma201648t.

    Article  Google Scholar 

  27. LU Lu-yao, ZHENG Tian-yue, WU Qing-he, SCHNEIDER A M, ZHAO Dong-lin, YU Lu-ping. Recent advances in bulk heterojunction polymer solar cells [J]. Chemical Reviews, 2015, 115(23): 12666–12731. DOI: https://doi.org/10.1021/acs.chemrev.5b00098.

    Article  Google Scholar 

  28. YUAN Jun, HUANG Tian-yi, CHENG Pei, ZOU Ying-ping, ZHANG Huo-tian, YANG J L, CHANG Sheng-Yung, ZHANG Zhen-zhen, HUANG Wen-chao, WANG Rui, MENG Dong, GAO Feng, YANG Yang. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics [J]. Nat Commun, 2019, 10: 570. DOI: https://doi.org/10.1038/s41467-019-08386-9.

    Article  Google Scholar 

  29. PROCTOR C M, KIM C, NEHER D, NGUYEN T Q. Nongeminate recombination and charge transport limitations in diketopyrrolopyrrole-based solution-processed small molecule solar cells [J]. Advanced Functional Materials, 2013, 23(28): 3584–3594. DOI: https://doi.org/10.1002/adfm.201202643.

    Article  Google Scholar 

  30. CHEN Xiao-bin, XU Gui-ying, ZENG Guang, GU Hong-wei, CHEN Hai-yang, XU Hai-tao, YAO Hui-feng, LI Yao-wen, HOU Jian-hui, LI Yong-fang. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode [J]. Advanced Materials, 2020, 32(14): 1908478. DOI: https://doi.org/10.1002/adma.201908478.

    Article  Google Scholar 

  31. MIHAILETCHI V D, WILDEMAN J, BLOM P W. Space-charge limited photocurrent [J]. Physical Review Letters, 2005, 94(12): 126602. DOI: https://doi.org/10.1103/PhysRevLett.94.126602.

    Article  Google Scholar 

  32. BLOM P W M, JONG M J M D, MUNSTER M G V. Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene) [J]. Physical Review B, 1997, 55: 656–659. DOI: https://doi.org/10.1103/PhysRevB.55.R656.

    Article  Google Scholar 

  33. MALLIARAS G G, SALEM J R, BROCK P J, SCOTT C. Electrical characteristics and efficiency of single-layer organic light-emitting diodes [J]. Physical Review B, 1998, 58: 13411–13414. DOI: https://doi.org/10.1103/PhysRevB.58.R13411.

    Article  Google Scholar 

Download references

Funding

Project(21875286) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Contributions

LI Zhe, YUAN Jun and ZOU Ying-ping conceived and directed the experiments. LI Zhe, ZOU Jie, GUAN Hui-lan and LI Jing performed the material synthesis. CHEN Hong-gang performed fabrication of devices. The first draft was written by LI Zhe, YUAN Jun and ZOU Ying-ping revised and edited the manuscript. ZOU Ying-ping supervised this work.

Corresponding author

Correspondence to Ying-ping Zou  (邹应萍).

Additional information

Conflict of interest

LI Zhe, CHEN Hong-gang, YUAN Jun, ZOU Jie, LI Jing, GUAN Hui-lan, and ZOU Ying-ping declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, Hg., Yuan, J. et al. A new low-bandgap polymer acceptor based on benzotriazole for efficient all-polymer solar cells. J. Cent. South Univ. 28, 1919–1931 (2021). https://doi.org/10.1007/s11771-021-4741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4741-7

Key words

关键词

Navigation