Skip to main content
Log in

Water-induced changes in strength characteristics of polyurethane polymer and polypropylene fiber reinforced sand

水对聚氨酯和聚丙烯纤维固化砂土强度特性的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

As a new kind of air-hardening soil reinforcement material, polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area. Thus, more attention should be paid to study the characteristics of reinforced soil after immersion. In this study, water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported. Several factors, including polymer content (1%, 2%, 3% and 4% by weight of dry sand), immersion time (6, 12, 24 and 48 h), dry density (1.40, 1.45, 1.50, 1.55 and 1.60 g/cm3,) and fiber content (0.2%, 0.4%, 0.6% and 0.8% by weight of dry sand) which may influence the strength characteristics of reinforced sand after immersion were analyzed. The microstructure of reinforced sand was analyzed with nuclear magnetic resonance (NMR) and scanning electron microscope (SEM). Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time; the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content. Fiber plays an active role in reducing water-induced loss of strength at 0.6% content.

摘要

聚合物作为一种新型气硬型土壤加固材料, 在河道岸坡加固和生态护坡领域得到了广泛的应用。本文研究了水对聚合物和纤维加固后砂土强度特性的影响。对可能影响浸水后加固砂土的强度特征的几个因素进行了分析, 包括聚合物含量(1%, 2%, 3%和 4%与干砂的质量比), 浸水时间(6, 12, 24 和48 h), 干密度(1.40, 1.45, 1.50, 1.55 和1.60 g/cm3)和纤维含量(0.2%, 0.4%, 0.6%和 0.8%与干砂的质量比)。用核磁共振(NMR)和扫描电子显微镜(SEM)对加固砂土的微观结构进行了分析。试验结果表明, 抗压强度随聚合物含量的增加而增大, 随浸水时间的延长而减小; 软化系数随聚合物含量的增加和浸泡时间的延长而减小, 随密度和纤维含量的增加而增大。纤维含量为0.6%时, 对减小水引起的强度损失有积极作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KERAMATIKERMAN M, CHEGENIZADEH A, NIKRAZ H. Experimental study on effect of fly ash on liquefaction resistance of sand [J]. Soil Dynamics and Earthquake Engineering, 2017, 93: 1–6. DOI: https://doi.org/10.1016/j.soildyn.2016.11.012.

    Article  Google Scholar 

  2. OURIA A, MAHMOUDI A. Laboratory and numerical modeling of strip footing on geotextile-reinforced sand with cement-treated interface [J]. Geotextiles and Geomembranes, 2018, 46(1): 29–39. DOI: https://doi.org/10.1016/j.geotexmem.2017.09.003.

    Article  Google Scholar 

  3. SUJATHA E R, GEETHA A R, JANANEE R, KARUNYA S R. Strength and mechanical behaviour of coir reinforced lime stabilized soil [J]. Geomechanics and Engineering, 2018, 16(6): 627–634. DOI: https://doi.org/10.12989/gae.2018.16.6.627.

    Google Scholar 

  4. CHANG I, IM J, PRASIDHI A K, CHO G C. Effects of Xanthan gum biopolymer on soil strengthening [J]. Construction and Building Materials, 2015, 74: 65–72. DOI: https://doi.org/10.1016/j.conbuildmat.2014.10.026.

    Article  Google Scholar 

  5. QURESHI M U, CHANG I, AL-SADARANI K. Strength and durability characteristics of biopolymer-treated desert sand [J]. Geomechanics and Engineering, 2017, 12(5): 785–801. DOI: https://doi.org/10.12989/gae.2017.12.5.785.

    Article  Google Scholar 

  6. NAQI A-li, JANG J. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review [J]. Sustainability, 2019, 11(2): 537. DOI: https://doi.org/10.3390/su11020537.

    Article  Google Scholar 

  7. LIU Jin, FENG Qiao, WANG Yong, ZHANG Da, WEI Jihong, KANUNGO D P. Experimental study on unconfined compressive strength of organic polymer reinforced sand [J]. International Journal of Polymer Science, 2018, 2018: 1–18. DOI: https://doi.org/10.1155/2018/3503415.

    Google Scholar 

  8. SONG Ze-zhuo, LIU Jin, BAI Yu-xia, WEI Ji-hong, LI Ding, WANG Qiong-ya, CHEN Zhi-hao, KANUNGO D P, QIAN Wei. Laboratory and field experiments on the effect of vinyl acetate polymer-reinforced soil [J]. Applied Sciences, 2019, 9(1): 208. DOI: https://doi.org/10.3390/app9010208.

    Article  Google Scholar 

  9. REZAEIMALEK S, HUANG Jie, BIN-SHAFIQUE S. Evaluation of curing method and mix design of a moisture activated polymer for sand stabilization [J]. Construction and Building Materials, 2017, 146: 210–220. DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.093.

    Article  Google Scholar 

  10. LÜ Q F, WANG Zi-shuai, GU Liu-yang, CHEN Yi, SHAN Xiao-kang. Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer [J]. Journal of Central South University, 2020, 27(6): 1691–1702. DOI: https://doi.org/10.1007/s11771-020-4400-4.

    Article  Google Scholar 

  11. DWARI R K, MISHRA B K. Evaluation of flocculation characteristics of kaolinite dispersion system using guar gum: A green flocculant [J]. International Journal of Mining Science and Technology, 2019, 29(5): 745–755. DOI: https://doi.org/10.1016/j.ijmst.2019.06.001.

    Article  Google Scholar 

  12. ANAGNOSTOPOULOS C A. Strength properties of an epoxy resin and cement-stabilized silty clay soil [J]. Applied Clay Science, 2015, 114: 517–529. DOI: https://doi.org/10.1016/j.clay.2015.07.007.

    Article  Google Scholar 

  13. HAMIDI S, MARANDI S M. Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin [J]. Geomechanics and Engineering, 2018, 15(2): 729–738. DOI: https://doi.org/10.12989/gae.2018.15.2.729.

    Google Scholar 

  14. CORREIA A A S, VENDA OLIVEIRA P J, CUSTÓDIO D G. Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders [J]. Geotextiles and Geomembranes, 2015, 43(2): 97–106. DOI: https://doi.org/10.1016/j.geotexmem.2014.11.008.

    Article  Google Scholar 

  15. DENG Zong-cai, GAO Lei, WANG Xian-yun. Glass fiber-reinforced polymer-reinforced rectangular concrete columns under simulated seismic loads [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(2): 1–12. DOI: https://doi.org/10.1007/s40430-018-1041-8.

    Article  Google Scholar 

  16. YANG Jia-qi, SMITH S T, WANG Zhen-yu. Seismic behaviour of fibre-reinforced-polymer- and steel-strengthened timber connections [J]. Advances in Structural Engineering, 2019, 22(2): 502–518. DOI: https://doi.org/10.1177/1369433218794001.

    Article  Google Scholar 

  17. CHEBBI M, GUIRAS H, JAMEI M. Tensile behaviour analysis of compacted clayey soil reinforced with natural and synthetic fibers: Effect of initial compaction conditions [J]. European Journal of Environmental and Civil Engineering, 2020, 24(3): 354–380. DOI: https://doi.org/10.1080/19648189.2017.1384762.

    Article  Google Scholar 

  18. TANG Chao-sheng, WANG De-yin, ZHU Cheng, ZHOU Qiyou, XU Shi-kang, SHI Bin. Characterizing drying-induced clayey soil desiccation cracking process using electrical resistivity method [J]. Applied Clay Science, 2018, 152: 101–112. DOI: https://doi.org/10.1016/j.clay.2017.11.001.

    Article  Google Scholar 

  19. PHANIKUMAR B R, SINGLA R. Swell-consolidation characteristics of fibre-reinforced expansive soils [J]. Soils and Foundations, 2016, 56(1): 138–143. DOI: https://doi.org/10.1016/j.sandf.2016.01.011.

    Article  Google Scholar 

  20. TANG Chao-sheng, LI Jian, WANG De-yin, SHI Bin. Investigation on the interfacial mechanical behavior of wave-shaped fiber reinforced soil by pullout test [J]. Geotextiles and Geomembranes, 2016, 44(6): 872–883. DOI: https://doi.org/10.1016/j.geotexmem.2016.05.001.

    Article  Google Scholar 

  21. TANG Chao-sheng, WANG De-yin, CUI Yu-jun, SHI Bin, LI Jian. Tensile strength of fiber-reinforced soil [J]. Journal of Materials in Civil Engineering, 2016, 28(7): 04016031. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0001546.

    Article  Google Scholar 

  22. MALEKZADEH M, BILSEL H. Hydro-mechanical behavior of polypropylene fiber reinforced expansive soils [J]. KSCE Journal of Civil Engineering, 2014, 18(7): 2028–2033. DOI: https://doi.org/10.1007/s12205-014-0389-2.

    Article  Google Scholar 

  23. LIU Jin, WANG Ying, KANUNGO D P, WEI Ji-hong, BAI Yu-xia, LI Ding, SONG Ze-zhuo, LU Yi. Study on the brittleness characteristics of sand reinforced with polypropylene fiber and polyurethane organic polymer [J]. Fibers and Polymers, 2019, 20(3): 620–632. DOI: https://doi.org/10.1007/s12221-019-8779-1.

    Article  Google Scholar 

  24. PARK S S. Unconfined compressive strength and ductility of fiber-reinforced cemented sand [J]. Construction and Building Materials, 2011, 25(2): 1134–1138. DOI: https://doi.org/10.1016/j.conbuildmat.2010.07.017.

    Article  Google Scholar 

  25. CHEN Mu, SHEN Shui-long, ARULRAJAH A, WU Huai-na, HOU Dong-wei, XU Ye-shuang. Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay [J]. Geotextiles and Geomembranes, 2015, 43(6): 515–523. DOI: https://doi.org/10.1016/j.geotexmem.2015.05.004.

    Article  Google Scholar 

  26. LIU Jin, BAI Yu-xia, SONG Ze-zhuo, WANG Ying, CHEN Zhi-hao, WANG Qiong-ya, KANUNGO D P, QIAN Wei. Effect of basalt fiber on the strength properties of polymer reinforced sand [J]. Fibers and Polymers, 2018, 19(11): 2372–2387. DOI: https://doi.org/10.1007/s12221-018-8507-2.

    Article  Google Scholar 

  27. JAMES J. Sugarcane press mud modification of expansive soil stabilized at optimum lime content: Strength, mineralogy and microstructural investigation [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(2): 395–402. DOI: https://doi.org/10.1016/j.jrmge.2019.10.005.

    Article  Google Scholar 

  28. LI Li-hua, ZHANG Jiang, XIAO Heng-lin, HU Zhi, WANG Zhi-jie. Experimental investigation of mechanical behaviors of fiber-reinforced fly ash-soil mixture [J]. Advances in Materials Science and Engineering, 2019, 2019: 1–10. DOI: https://doi.org/10.1155/2019/1050536.

    Google Scholar 

  29. BOZ A, SEZER A. Influence of fiber type and content on freeze-thaw resistance of fiber reinforced lime stabilized clay [J]. Cold Regions Science and Technology, 2018, 151: 359–366. DOI: https://doi.org/10.1016/j.coldregions.2018.03.026.

    Article  Google Scholar 

  30. ORAKOGLU M E, LIU Jian-kun, NIU Fu-jun. Experimental and modeling investigation of the thermal conductivity of fiber-reinforced soil subjected to freeze-thaw cycles [J]. Applied Thermal Engineering, 2016, 108: 824–832. DOI: https://doi.org/10.1016/j.applthermaleng.2016.07.112.

    Article  Google Scholar 

  31. JU C P, HUNG S H, CHEN Chang-keng, CHEN W L, LEE J W, LIN R M, CHEN Wen-cheng, CHERN LIN J H. Immersion-induced changes in structure and properties of a TTCP/DCPA/CSH cement [J]. Materials Chemistry and Physics, 2011, 130(1–2): 303v308. DOI: https://doi.org/10.1016/j.matchemphys.2011.06.051.

    Google Scholar 

  32. LIU Jin, BAI Yu-xia, LI Ding, WANG Qiong-ya, QIAN Wei, WANG Ying, KANUNGO D, WEI Ji-hong. An experimental study on the shear behaviors of polymer-sand composite materials after immersion [J]. Polymers, 2018, 10(8): 924. DOI: https://doi.org/10.3390/polym10080924.

    Article  Google Scholar 

  33. DIAMBRA A, IBRAIM E, MUIR WOOD D, RUSSELL A R. Fibre reinforced sands: Experiments and modelling [J]. Geotextiles and Geomembranes, 2010, 28(3): 238–250. DOI: https://doi.org/10.1016/j.geotexmem.2009.09.010.

    Article  Google Scholar 

  34. ZHANG Xi-dong, RUSSELL A R. Assessing liquefaction resistance of fiber-reinforced sand using a new pore pressure ratio [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(1): 04019125. DOI: https://doi.org/10.1061/(asce)gt.1943-5606.0002197.

    Article  Google Scholar 

  35. BCC Research. Polyurethanes: New technologies and applications drive global market growth [R]. BCC Research, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu  (刘瑾).

Additional information

Foundation item

Project(41472241) supported by the National Natural Science Foundation of China; Project(KJXM2019028) supported by the Natural Resources Science and Technology Project of Jiangsu Province, China; Project(2019B17314) supported by the Fundamental Research Funds for the Central Universities, China

Contributors

WANG Ying wrote the draft of manuscript and plotted the figure. LIU Jin provided the concept and reviewed the manuscript. SHAO Yong provided the experimental sand and carried out tests. MA Xiaofan carried out the NMR tests. QI Chang-qing conducted data analysis and conducted the literature review. CHEN Zhi-hao carried out the tests of strength and polished up the draft of manuscript.

Conflict of interest

WANG Ying, LIU Jin, SHAO Yong, MA Xiaofan, QI Chang-qing, and CHEN Zhi-hao declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, J., Shao, Y. et al. Water-induced changes in strength characteristics of polyurethane polymer and polypropylene fiber reinforced sand. J. Cent. South Univ. 28, 1829–1842 (2021). https://doi.org/10.1007/s11771-021-4733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4733-7

Key words

关键词

Navigation