Skip to main content
Log in

Dynamic engagement characteristics of wet clutch based on hydro-mechanical continuously variable transmission

基于HMCVT 的湿式离合器动态接合特性研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The effect of the design parameter on the clutch engagement process of the hydro-mechanical continuously variable transmission (CVT) was investigated. First, the model of the power train was developed with the software of SimulationX, and the clutch shift experiment was used to validate the correctness of the model. Then, the friction coefficient function was fitted with the test data to get the friction coefficient model suitable for this paper. Finally, based on the evaluating index of the friction torque and the friction power, two groups of design parameters (oil pressure and friction coefficient) were simulated and explained the changing regulation theoretically. According to the simulation results, the high oil pressure and friction coefficient can reduce the slipping time. The large oil pressure can increase the peak torque but the effect of friction coefficient on the peak torque is not so significant. The friction power reaches the maximum value at 3.2 s, the peak value increases as the oil pressure and friction coefficient increase. The effect of the oil pressure on the clutch engagement and thermal performance is greater than the friction coefficient.

摘要

本文研究了设计参数对液压机械式无级变速器离合器接合过程的影响。首先, 使用SimulationX软件开发了动力传动系的模型, 并使用离合器换档实验验证了模型的正确性。然后, 将摩擦系数函数与测试数据进行拟合, 得出适用于本文的摩擦系数模型。最后, 基于摩擦力矩和摩擦力的评价指标, 对两组设计参数(油压和摩擦系数)进行了仿真, 并从理论上解释了变化规律。根据仿真结果, 高油压和摩擦系数可以缩短打滑时间。大的油压可以增加峰值扭矩, 但是摩擦系数对峰值扭矩的影响不是很大。摩擦力在3.2 s 达到最大值, 峰值随着油压和摩擦系数的增加而增加。油压对离合器接合和热性能的影响大于摩擦系数。该研究可为离合器的工作可靠性研究提供参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAIKWAR S, TEWARI V K, MUKHOPADHYAY S, VERMA C R B, RAO M S. Simulation of components of a power shuttle transmission system for an agricultural tractor [J]. Computers and Electronics in Agriculture, 2015, 115: 114–124. DOI: https://doi.org/10.1016/j.compag.2015.03.006.

    Article  Google Scholar 

  2. MASHABI B, AMIRI-RED Y, AFKAR A, MAHMOODI-KALEYBAR M. Simulation of automobile fuel consumption and emissions for various driver’s manual shifting habits [J]. Journal of Central South University, 2014, 21(3): 1058–1066. DOI: https://doi.org/10.1007/s11771-014-2037-x.

    Article  Google Scholar 

  3. SHEN Chu-jing, YUAN Shi-hua, HU Ji-bin, WU Wei, WEI Chao, CHEN Xing. Principle and characteristics of original hydraulic traction drive CVT [J]. Journal of Central South University, 2014, 21(4): 1654–1659. DOI: https://doi.org/10.1007/s11771-014-2107-0.

    Article  Google Scholar 

  4. OMPUSUNGGU A P, PAPY J, VANDENPLAS S P, BRUSSEL H K. A novel monitoring method of wet friction clutches based on the post-lockup torsional vibration signal [J]. Mechanical Systems and Signal Processing, 2013, 35(1, 2): 345–368. DOI: https://doi.org/10.1016/j.ymssp.2012.10.005.

    Article  Google Scholar 

  5. YU Liang, MA Biao, LI Ji-kai, LI Ming-yang. Numerical and experimental studies of a wet multidisc clutch on temperature and stress fields excited by the concentrated load [J]. Triboligy Transactions, 2019, 62(1): 8–21. DOI: https://doi.org/10.1080/10402004.2018.1453570.

    Article  Google Scholar 

  6. LIU Ji-kai, MA Biao, LI He-yan, CHEN Man, LI Guo-qiang. Control strategy optimization for a dual-clutch transmission downshift with a single slipping clutch during the torque phase [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232(5): 651–666. DOI: https://doi.org/10.1177/0954407017704783.

    Google Scholar 

  7. AL-SHABIBI A M. Transient behavior of initial perturbation in multidisk clutch system [J]. Tribology Transactions, 2014, 57(6): 1164–1171. DOI: https://doi.org/10.1080/10402004.2014.945198.

    Article  Google Scholar 

  8. GREENWOOD J A, WILLIAMSON J B P P. Contact of nominally flat surfaces [J]. Proceedings of the Royal Society of London, 1966, 295(1442): 300–319.

    Google Scholar 

  9. LI M, KHONSARI M M, MCCARTHY D M C, LUNDIN J. On the wear prediction of the paper-based friction materialin a wet clutch [J]. Wear, 2015, 334–335: 56–66. DOI: https://doi.org/10.1016/j.wear.2015.04.005.

    Article  Google Scholar 

  10. KANDA K. Impact of organic sulfur on frictional performance [C]// SAE World Congress Experience. SAE International, 2017: 01487191. DOI: https://doi.org/10.4271/2017-01-1129.

  11. ZHANG Ya-li, ZHANG Xiao-gang, WU Tong-hai, XIE You-bai. Effects of surface texturing on the tribological behavior of piston rings under lubricated conditions [J]. Industrial Lubrication and Tribology, 2016, 68(2): 158–169. DOI: https://doi.org/10.1108/ILT-05-2015-0063.

    Article  Google Scholar 

  12. WEI Wei-hua, LI Yuan-tong, XUE Tong-ming. The research progress of machining mechanisms in milling wood-based materials [J]. Bioresources, 2018, 13(1): 2139–2149. DOI: https://doi.org/10.15376/biores.13.1.Wei.

    Google Scholar 

  13. ZHAO Er-hui, MA Biao, LI He-yan, NAVARRO C. Study on the high temperature friction and wear behaviors of Cu-based friction pairs in wet clutches by pin-on-disc tests [J]. Materials Science & Engineering R-Reports, 2017(4): 4–12. DOI: https://doi.org/10.1155/2017/6373190.

  14. ZHANG Fei-tie, ZHOU Yun-shan, CAI Yuan-chun, XUE Dian-lun. Study on the influence of dynamic friction coefficient of wet clutch on the torque transmission of continuously variable transmission [J]. China Mechanical Engineering, 2013, 24(12): 1682–1686. DOI: http://www.cmemo.org.cn/CN/Y2013/V24/I12/1682. (in Chinese)

    Google Scholar 

  15. FENG Wan-qiang. Research on nonlinear model and characteristics of CVT wet clutch combined process [D]. Changchun: Jilin University, 2008. DOI: https://cdmd.cnki.com.cn/Article/CDMD-10183-2009052630.htm. (in Chinese)

    Google Scholar 

  16. ZHU Hong-qing. Research on the slip characteristics and thermal load characteristics of wet clutch [D]. Hangzhou: Zhejiang University, 2012. DOI: https://cdmd.cnki.com.cn/Article/CDMD-10335-1012321332.htm. (in Chinese)

    Google Scholar 

  17. LU Xi, WANG Shu-han, LIU Yan-fang, XU Xiang-yang. Application of clutch to clutch gear shift technology for a new automatic transmission [J]. Journal of Central South University, 2012, 19(10): 2788–2796. DOI: https://doi.org/10.1007/s11771-012-1343-4.

    Article  Google Scholar 

  18. SUN Xiao-long, LI Xiao-yan, ZHU You-li, XU Bin-shi. Failure analysis of wear of main clutch separating ring of heavy vehicles [J]. Journal of Central South University of Technology, 2005, 12(2): 124–128. DOI: https://doi.org/10.1007/s11771-005-0023-z.

    Article  Google Scholar 

  19. ZHANG Xin-sheng. Research on the stepless shifting and control strategy of hydraulic mechanical continuously variable transmission [D]. Changchun: Jilin University, 2011. DOI: https://cdmd.cnki.com.cn/Article/CDMD-10183-1011100912.htm. (in Chinese)

    Google Scholar 

  20. XIAO Mao-hua, ZHAO Jing, WANG Yue-wen, ZHANG Hai-jun, LU Zhi-xiong, WEI Wei-hua. Fuel economy of multiple conditions self-adaptive tractors with hydro-mechanical CVT [J]. International Journal of Agricultural and Biological Engineering, 2018, 11(3): 102–109. DOI: https://doi.org/10.25165/j.ijabe.20181103.2158.

    Article  Google Scholar 

  21. XIAO Mao-hua, WANG Yue-wen, ZOU Fan, ZHANG Hai-jun, LI Xian-hua. Dynamic simulation research of hydremechanical CVT [J]. IETE Journal of Research, 2019(4): 1–12. DOI: https://doi.org/10.1080/03772063.2019.1589391.

  22. XIAO Mao-hua, ZHAO Jing, WANG Yue-wen, YANG Fei, KANG Jing-jing, ZHANG Hai-jun. Research on system identification based on hydraulic pump-motor of HMCVT [J]. Engineering in Agriculture, Environment and Food, 2019, 4(12): 420–426. DOI: https://doi.org/10.1016/j.eaef.2019.06.004.

    Article  Google Scholar 

  23. IQBAL S, AL-BENDER F, OMPUSUNGGU A P, PLUYMERS B, DESMET W. Modeling and analysis of wet friction clutch engagement dynamics [J]. Mechanical Systems and Signal Processing, 2015, 60–61: 420–436. DOI: https://doi.org/10.1016/j.ymssp.2014.12.024.

    Article  Google Scholar 

  24. HWANG H S, YANG D H, CHOI H K. Torque control of engine clutch to improve the driving quality of hybrid electric vehicles [J]. International Journal of Automotive Technology, 2011, 12(5): 763–768. DOI: https://doi.org/10.1007/s12239-011-0088-7.

    Article  Google Scholar 

  25. NIU Wen-xia, LIU Xiao-qiang, HAN Wen-zheng. Analysis of factors affecting the performance of tracked vehicle friction plates [J]. Ordnance Material Science and Engineering, 2005, 28(3): 30–33. DOI: https://doi.org/10.14024/j.cnki.1004-244x.2005.03.015. (in Chinese)

    Google Scholar 

  26. TUMBUAN T P, NURPRASETIO I P, INDRAWANTO I, ABIDIN Z. Revisiting the Kalman’s conjecture to stabilize the motion of a DC motor in the presence of stribeck friction via PID control [J]. International Review of Automatic Control, 2019, 12(1): 48–58. DOI: https://doi.org/10.15866/ireaco.v12i1.16806.

    Article  Google Scholar 

  27. YANG Li-chen. Simulation analysis of torque characteristics of multi-plate wet clutches [D]. Changchun: Jilin University, 2015. DOI: https://cdmd.cnki.com.cn/Article/CDMD-10183-1015588092.htm. (in Chinese)

    Google Scholar 

  28. XU Xiao-mei, LIN Ping. Parameter identification of sound absorption model of porous materials based on modified particle swarm optimization algorithm [J]. PloS One, 2021, 16(5): e0250950. DOI: https://doi.org/10.1371/journal.pone.0250950.

    Article  Google Scholar 

  29. GREENFIELD M L, OHTANI H. Friction and normal forces of model friction modifier additives in simulations of boundary lubrication [J]. Molecular Physics, 2019, 117(23, 24): 3871–3883. DOI: https://doi.org/10.1080/00268976.2019.1670876.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-hua Xiao  (肖茂华).

Additional information

Foundation item

Project(CX(19)3081) supported by the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province, China; Project (BE2018127) supported by the Key Research and Development Program of Jiangsu Province, China

Contributors

ZHAO Jing provided the concept and edited the draft of manuscript. XIAO Mao-hua conducted the literature review and wrote the first draft of the manuscript. Petr BARTOS and Andrea BOHATA edited the draft of manuscript.

Conflict of interest

ZHAO Jing, XIAO Mao-hua, BARTOS Petr and BOHATA Andrea declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Xiao, Mh., Bartos, P. et al. Dynamic engagement characteristics of wet clutch based on hydro-mechanical continuously variable transmission. J. Cent. South Univ. 28, 1377–1389 (2021). https://doi.org/10.1007/s11771-021-4709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4709-7

Key words

关键词

Navigation