Skip to main content
Log in

Centrifugal and field studies on water infiltration characteristics below canals under wetting-drying-freezing-thawing cycles

湿干冻融循环下渠水入渗特性的离心模型试验和现场试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Seepage is one of the main causes for the deformation and instability of canal slopes in Xinjiang, China. In this study, centrifugal model tests under wetting-drying (WD) and wetting-drying-freezing-thawing (WDFT) cycles were performed to investigate the water infiltration characteristics below a canal. The results show that the shallow soil of the canal models was fully saturated in the wetting process. Compared with the canal model under the WD cycles, the canal model under the WDFT cycles had larger saturated areas and a higher degree of saturation below the canal top after each cycle, indicating that the freezing-thawing (FT) process in the WDFT cycles promoted the water infiltration behavior below the canal slope. The cracks on the surface of the canal model under the cyclic action of WDFT developed further and had a higher connectivity, which provided the conditions for slope instability from a transverse tensile crack running through the canal top. On this basis, a field test was conducted to understand the water infiltration distribution below a typical canal in Xinjiang, China, which also verified the accuracy of the centrifugal results. This study provides a preliminary basis for the maintenance and seepage treatment of canals in Xinjiang, China.

摘要

渗漏问题是造成北疆供水渠道变形失稳的主要原因之一。本文通过离心模型试验探究了湿干循 环和湿干冻融循环下渠水的入渗特性。结果发现, 模型渠道浅层基土在湿润过程中完全饱和。相比于 湿干循环下的模型渠道, 每次湿干冻融循环后模型渠道顶部区域的饱和程度更高, 表明湿干冻融循环 中的冻融过程促进了模型渠道顶部区域的水分入渗行为。同时, 湿干冻融循环下模型渠道的表面裂隙 发育以及连通程度也更高, 造成渠道边坡有着自渠顶横向张拉裂隙发生失稳的趋势。在此基础上, 通 过现场典型渠道渠水入渗分布情况验证了离心模型试验的准确性。本研究为北疆供水渠道维护以及防 渗工作提供依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN Jia-qi, XIA Jun. Facing the challenge: Barriers to sustainable water resources development in China [J]. Hydrological Sciences Journal, 1999, 44(4): 507–516. DOI: https://doi.org/10.1080/02626669909492248.

    Article  Google Scholar 

  2. LU Zhao-hui, ZHAO Li-xin, DAI Jian. A study of water resource management in the Tarim Basin, Xinjiang [J]. International Journal of Environmental Studies, 2010, 67(2): 245–255. DOI: https://doi.org/10.1080/00207231003693274.

    Article  Google Scholar 

  3. ZHU Rui, HUANG Ying-hao, ZHANG Chen, GUO Wan-li, CHEN Hao. Laboratory and centrifugal model tests on failure mechanism of canal slopes under cyclic action of wetting-drying [J]. European Journal of Environmental and Civil Engineering, 2020. DOI: https://doi.org/10.1080/19648189.2020.1773321.

  4. CAI Zheng-yin, HUANG Ying-hao. Evaluation and treatment technology of frost damage in canals in saline and cold regions [M]. Beijing, China: Science Press, 2015. (in Chinese)

    Google Scholar 

  5. CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, ZHANG Chen. Evolution rules of fissures in expansive soils under cyclic action of coupling wet-dry and freeze-thaw [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381–1389. DOI: https://doi.org/10.11779/CJGE201908001. (in Chinese)

    Google Scholar 

  6. ZHU Xun, LI Guo-ying, CAI Zheng-yin, HUANG Ying-hao, ZHANG Chen, CHEN Hao. Failure modes and slope stability of expansive soil canal under wet-dry cycles [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 159–167. DOI: https://doi.org/10.11975/j.issn.1002-6819.2020.04.019. (in Chinese)

    Google Scholar 

  7. LI Shuang-yang, LAI Yuan-ming, PEI Wan-sheng, ZHANG Shu-juan, ZHONG Hua. Moisture-temperature changes and freeze-thaw hazards on a canal in seasonally frozen regions [J]. Natural Hazards, 2014, 72(2): 287–308. DOI: https://doi.org/10.1007/s11069-013-1021-3.

    Article  Google Scholar 

  8. LI Shuang-yang, LAI Yuan-ming, ZHANG Ming-yi, PEI Wan-sheng. Centrifuge and numerical modeling of the frost heave mechanism of a cold-region canal [J]. Acta Geotechnica, 2019, 14(4): 1113–1128. DOI: https://doi.org/10.1007/s11440-018-0710-1.

    Article  Google Scholar 

  9. LIU Quan-hong, WANG Zheng-zhong, LI Zhan-chao, WANG Yi. Transversely isotropic frost heave modeling with heat-moisture-deformation coupling [J]. Acta Geotechnica, 2020, 15: 1273–1287. DOI: https://doi.org/10.1007/s11440-019-00774-1.

    Article  Google Scholar 

  10. CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, ZHANG Chen, GUO Wan-li. Research on mechanical properties and damage evolution law of expensive soils under cyclic action of coupling wetting-drying and freeze-thaw [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1233–1241. DOI: https://doi.org/10.13722/j.cnki.jrme.2018.1470. (in Chinese)

    Google Scholar 

  11. CAI Zheng-yin, ZHU Rui, HUANG Ying-hao, ZHANG Chen, GUO Wan-li, CHEN Hao. Influences of freeze-thaw process on the deterioration mode of expansive soil canal slope [J]. Journal of Hydraulic Engineering, 2020, 51(8): 915–923. DOI: https://doi.org/10.13243/j.cnki.slxb.20200064. (in Chinese)

    Google Scholar 

  12. XIAO Heng-lin, HUANG Jie. Experimental study of the applications of fiber optic distributed temperature sensors in detecting seepage in soils [J]. Geotechnical Testing Journal, 2013, 36(3): 360–368. DOI: https://doi.org/10.1520/gtj20120096.

    Article  MathSciNet  Google Scholar 

  13. GENEREUX D P, GUARDIARIO J. A canal drawdown experiment for determination of aquifer parameters [J]. Journal of Hydrologic Engineering, 1998, 3(4): 294–302. DOI: https://doi.org/10.1061/(ASCE)1084-0699(1998)3:4(294).

    Article  Google Scholar 

  14. GOYAL R, CHAWLA A S. Seepage from canals with infiltration from free surface zone [J]. Journal of Irrigation and Drainage Engineering, 1997, 123(4): 257–263. DOI: https://doi.org/10.1061/(ASCE)0733-9437(1997)123:4(257).

    Article  Google Scholar 

  15. RAM S, JAISWAL C S, CHAUHAN H S. Transient water table rise with canal seepage and recharge [J]. Journal of Hydrology, 1994, 163(3, 4): 197–202. DOI: https://doi.org/10.1016/0022-1694(94)90139-2.

    Article  Google Scholar 

  16. SWAMEE P K, MISHRA G C, CHAHAR B R. Design of minimum seepage loss canal sections [J]. Journal of Irrigation and Drainage Engineering, 2000, 126(1): 28–32. DOI: https://doi.org/10.1061/(ASCE)0733-9437(2000)126:1(28).

    Article  Google Scholar 

  17. ZHAN Liang-tong, NG C W W, FREDLUND D G. Field study of rainfall infiltration into a grassed unsaturated expansive soil slope [J]. Canadian Geotechnical Journal, 2007, 44(4): 392–408. DOI: https://doi.org/10.1139/T07-001.

    Article  Google Scholar 

  18. FU Qiang, LI Yue, LI Tian-xiao, CUI Song, LIU Dong. HYDRUS simulation and verification of canal leakage and its influencing factors analysis [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 112–118. DOI: https://doi.org/10.11975/j.issn.1002-6819.2017.16.015. (in Chinese)

    Google Scholar 

  19. FU Qiang, HOU Ren-jie, LI Tian-xiao, LI Yue, LIU Dong, LI Mo. A new infiltration model for simulating soil water movement in canal irrigation under laboratory conditions [J]. Agricultural Water Management, 2019, 213: 433–444. DOI: https://doi.org/10.1016/j.agwat.2018.10.021.

    Article  Google Scholar 

  20. YAO Li-qiang, FENG Shao-yuan, MAO Xiao-min, HUO Zailin, KANG Shao-zhong, BARRY D A. Coupled effects of canal lining and multi-layered soil structure on canal seepage and soil water dynamics [J]. Journal of Hydrology, 2012, 430–431: 91–102. DOI: https://doi.org/10.1016/j.jhydrol.2012. 02.004.

    Article  Google Scholar 

  21. SOLOMON F, EKOLU S. Effect of clay-concrete lining on canal seepage towards the drainage region-An analysis using Finite-Element method [C]// International Conference in Construction Materials and Structures. South Africa: University of Johannesburg, 2014: 1331–1341. DOI: https://doi.org/10.1126/science.1249766.

    Google Scholar 

  22. ZHANG Jian, WEI Zhan-min, ZHANG Jin-ding, SU Ri-na. The channel leakage simulation and its influence factors analysis based on HYDRUS model [J]. Journal of Soil and Water Conservation, 2020, 34(1): 141–148. DOI: https://doi.org/10.13870/j.cnki.stbcxb.2020.01.021. (in Chinese)

    Google Scholar 

  23. FIPPS J G, SKAGGS R W. Effect of canal seepage on drainage to parallel drains [J]. Transactions of the American Society of Agricultural Engineers, 1986, 29(5): 1278–1283. DOI: https://doi.org/10.13031/2013.30309.

    Article  Google Scholar 

  24. TAYLER R N. Geotechnical centrifuge techology [M]. Glasgow, UK: Blackie Academic and Professional, 1995.

    Google Scholar 

  25. CHEN Xiang-sheng, PU Jia-liu, LUO Xiao-gang, WEI Kunting. Centrifuge modelling tests of soil freezing heave [J]. Journal of China Coal Society, 1999, 24(6): 615–619. DOI: CNKI:SUN:MTXB.0.1999-06-012. (in Chinese)

    Google Scholar 

  26. HUANG Ying-hao, CAI Zheng-yin, ZHANG Chen, XU Guang-ming, HONG Jian-zhong, ZHAO Bao-zhong. Development of centrifugal model test facility for frost-heave of channels [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 615–621. DOI: https://doi.org/10.11779/CJGE201504006. (in Chinese)

    Google Scholar 

  27. ZHANG Chen, CAI Zheng-yin, HUANG Ying-hao, XU Guang-ming, REN Guo-feng. Centrifuge modelling of frost-heave of canals [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 109–116. DOI: https://doi.org/10.11779/CJGE201601011. (in Chinese)

    Google Scholar 

  28. ASTM (D6913). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis [S].

  29. ASTM (D4318). Standard test methods for liquid limit, plastic limit, and plasticity index of soils [S].

  30. ASTM (D698). Standard test methods for laboratory compaction characteristics of soil using standard effort [S].

  31. ASTM (D4829). Standard test method for expansion index of soils [S].

  32. ZHU Xun. Failure mechanism and stability analysis for expansive soil canal under cyclic action of coupling wetting-drying and freeze-thaw [D]. Nanjing, China: Nanjing Hydraulic Research Institute, 2019. (in Chinese)

    Google Scholar 

  33. DL/T-5102: Chinese Energy Administration. Specification for geotechnical centrifuge model test techniques [S]. (in Chinese)

  34. BUTTERFIELD R. Dimensional analysis for geotechnical engineers [J]. Geotechnique, 1999, 49(3): 357–366. DOI: https://doi.org/10.1680/geot.1999.49.3.357.

    Article  Google Scholar 

  35. BUTTERFIELD R. Scale-modelling of fluid flow in geotechnical centrifuges [J]. Soils and Foundations, 2000, 40(6): 39–45. DOI: https://doi.org/10.3208/sandf.40.6_39.

    Article  Google Scholar 

  36. ZHANG Chen, CAI Zheng-yin, XU Guang-ming, HUANG Ying-hao. Dimensional analysis of centrifugal modeling of frozen soil [J]. Rock and Soil Mechanics, 2018, 39(4): 1236–1244. DOI: https://doi.org/10.16285/j.rsm.2016.1099. (in Chinese)

    Google Scholar 

  37. CHEN Hao. Study on stability of canal slope of expansive soil under drying-weting cycles [D]. Nanjing, China: Nanjing Hydraulic Research Institute, 2019. (in Chinese)

    Google Scholar 

  38. TANG Chao-sheng, SHI Bin, LIU Chun, ZHAO Li-zheng, WANG Bao-jun. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils [J]. Engineering Geology, 2008, 101(3, 4): 204–217. DOI: https://doi.org/10.1016/j.enggeo.2008.05.005.

    Article  Google Scholar 

  39. MU Kun, KONG Lin-wei, ZHANG Xian-wei, YIN Song. Experimental investigation on engineering behaviors of red clay under effect of wetting-drying cycle [J]. Rock and Soil Mechanics, 2016, 37(8): 2247–2253. DOI: https://doi.org/10.16285/j.rsm.2016.08.016. (in Chinese)

    Google Scholar 

  40. CHEN Tie-lin, ZHOU Cheng, WANG Guo-li, LIU En-long, DAI Fei. Centrifuge model test on unsaturated expansive soil slopes with cyclic wetting-drying and inundation at the slope toe [J]. International Journal of Civil Engineering, 2018, 16(6): 1341–1360. DOI: https://doi.org/10.1007/s40999-017-0228-1.

    Article  Google Scholar 

  41. CAI Zheng-yin, ZHU Rui, HUANG Ying-hao, ZHANG Chen, GUO Wan-li. Centrifugal model tests on deterioration process of canal under cyclicaction of coupling wetting-drying and freeze-thaw [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1773–1782. DOI: https://doi.org/10.11779/CJGE202010001. (in Chinese)

    Google Scholar 

  42. KONRAD J M, AYAD R. Desiccation of a sensitive clay: Field experimental observations [J]. Canadian Geotechnical Journal, 1997, 34(6): 929–942. DOI: https://doi.org/10.1139/t97-063.

    Article  Google Scholar 

  43. KHAN M S, HOSSAIN S, AHMED A, FAYSAL M. Investigation of a shallow slope failure on expansive clay in Texas [J]. Engineering Geology, 2017, 219: 118–129. DOI: https://doi.org/10.1016/j.enggeo.2016.10.004.

    Article  Google Scholar 

  44. LU Yang, LIU Si-hong, ALONSO E, WANG Liu-jiang, XU Lei, LI Zhuo. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles [J]. Cold Regions Science and Technology, 2019, 157: 206–214. DOI: https://doi.org/10.1016/j.coldregions.2018.10.008.

    Article  Google Scholar 

  45. TANG Liang, CONG Sheng-yi, GENG Lin, LING Xian-chang, GAN Fa-da. The effect of freeze-thaw cycling on the mechanical properties of expansive soils [J]. Cold Regions Science and Technology, 2018, 145: 197–207. DOI: https://doi.org/10.1016/j.coldregions.2017.10.004.

    Article  Google Scholar 

  46. ZHOU Zhong, LIU Zhuang-zhuang, YANG Hao, GAO Wenyuan, ZHANG Cheng-cheng. Freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures [J]. Journal of Central South University, 2020, 27(2): 554–565. DOI: https://doi.org/10.1007/s11771-020-4316-z.

    Article  Google Scholar 

  47. ZHANG Hong-wei, WANG Xue-ying, ZHAO Xin, LIU Pengfei. In-situ experiment investigations of hydrothermal process of highway in deep seasonal frozen soil regions of Inner Mongolia, China [J]. Journal of Central South University, 2020, 27(7): 2082–2093. DOI: https://doi.org/10.1007/s11771-020-4432-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-yin Cai  (蔡正银).

Additional information

Foundation item

Project(2017YFC0405100) supported by the National Key Research and Development Program of China; Projects(51879166, 51709185, 51909170) supported by the National Natural Science Foundation of China; Project(SKLFSE201909) supported by the Open Research Fund Program of State Key Laboratory of Permafrost Engineering, China; Project(2018M640500) supported by Postdoctoral Science Foundation of China

Contributors

ZHU Rui and CAI Zheng-yin provided the concept. ZHU Rui and HUANG Ying-hao conducted the literature review and wrote the first draft of the manuscript. ZHANG Chen, GUO Wan-li and ZHU Xun edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

ZHU Rui, CAI Zheng-yin, HUANG Ying-hao, ZHANG Chen, GUO Wan-li and ZHU Xun declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Cai, Zy., Huang, Yh. et al. Centrifugal and field studies on water infiltration characteristics below canals under wetting-drying-freezing-thawing cycles. J. Cent. South Univ. 28, 1519–1533 (2021). https://doi.org/10.1007/s11771-021-4703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4703-0

Key words

关键词

Navigation