Skip to main content
Log in

Relationship between critical seismic acceleration coefficient and static factor of safety of 3D slopes

三维边坡临界地震加速度系数与静态安全系数的关系

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers, e.g. static safety of factor (static FoS) or the critical seismic acceleration coefficient, while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient. This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis. Based on the 3D rotational failure mechanism, the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined. Then, the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angle β, the fractional angle φ, and the dimensionless coefficients B/H and c/γH. Finally, a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results.

摘要

现有的理论分析方法主要通过提供各种稳定性系数, 例如静态安全系数或临界地震加速度系数 实现对边坡稳定性的评估, 而关于边坡安全系数与临界地震加速度系数的相关关系的研究较少。本文 在极限分析上限分析法的框架下, 探讨了三维边坡静态安全系数与临界地震加速度系数之间的关系。 基于三维旋转破坏机理, 首先, 采用拟静力法给出了边坡临界地震加速度系数和采用强度折减技术给 出了静态安全系数; 然后, 在考虑不同的坡角β、摩擦角φ 和无量纲系数B/Hc/γH 的条件下, 研究 了静态安全系数与临界地震加速度系数的相关关系; 最后, 给出了静态安全系数与临界地震加速度系 数的拟合公式, 并通过理论结果和数值结果对所提出的拟合公式进行了验证。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KRABBENHOFT K, LYAMIN A V. Strength reduction finite-element limit analysis [J]. Géotechnique Letters, 2015, 5(4): 250–253. DOI: https://doi.org/10.1680/jgele.15.00110.

    Article  Google Scholar 

  2. SHEN Jia-yi, KARAKUS M, XU Chao-shui. Chart-based slope stability assessment using the generalized Hoek-Brown criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 210–219. DOI: https://doi.org/10.1016/j.ijrmms.2013.09.002.

    Article  Google Scholar 

  3. SUN Zhi-bin, LI Jian-fei, PAN Qiu-jing, DIAS D, LI Shu-qin, HOU Chao-qun. Discrete kinematic mechanism for nonhomogeneous slopes and its application [J]. International Journal of Geomechanics, 2018, 18(12): 04018171. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0001303.

    Article  Google Scholar 

  4. KUMAR J, SAMUI P. Stability determination for layered soil slopes using the upper bound limit analysis [J]. Geotechnical & Geological Engineering, 2006, 24(6): 1803–1819. DOI: https://doi.org/10.1007/s10706-006-7172-1.

    Article  Google Scholar 

  5. HE Yi, LIU Yan, HAZARIKA H, YUAN Ran. Stability analysis of seismic slopes with tensile strength cut-off [J]. Computers and Geotechnics, 2019, 112: 245–256. DOI: https://doi.org/10.1016/j.compgeo.2019.04.029.

    Article  Google Scholar 

  6. MICHALOWSKI R L, DRESCHER A. Three-dimensional stability of slopes and excavations [J]. Géotechnique, 2009, 59(10): 839–850. DOI: https://doi.org/10.1680/geot.8.p.136.

    Article  Google Scholar 

  7. CHENG Y M, LANSIVAARA T, WEI W B. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods [J]. Computers and Geotechnics, 2007, 34(3): 137–150. DOI: https://doi.org/10.1016/j.compgeo.2006.10.011.

    Article  Google Scholar 

  8. MAJUMDAR D K. Stability of soil slopes under horizontal earthquake force [J]. Géotechnique, 1971, 21(1): 84–88. DOI: https://doi.org/10.1680/geot.1971.21.1.84.

    Article  Google Scholar 

  9. SAHOO P P, SHUKLA S K. Taylor’s slope stability chart for combined effects of horizontal and vertical seismic coefficients [J]. Géotechnique, 2019, 69(4): 344–354. DOI: https://doi.org/10.1680/jgeot.17.p.222.

    Article  Google Scholar 

  10. CHEN W F. Limit analysis and soil plasticity [M]. Amsterdam: Elsevier, 2013.

    Google Scholar 

  11. DRESCHER A. Limit plasticity approach to piping in bins [J]. Journal of Applied Mechanics, 1983, 50(3): 549–553. DOI: https://doi.org/10.1115/1.3167089.

    Article  Google Scholar 

  12. MICHALOWSKI R L. Three-dimensional analysis of locally loaded slopes [J]. Géotechnique, 1989, 39(1): 27–38. DOI: https://doi.org/10.1680/geot.1989.39.1.27.

    Article  Google Scholar 

  13. BALIGH M M, AZZOUZ A S. End effects on stability of cohesive slopes [J]. Journal of the Geotechnical Engineering Division, 1975, 101(11): 1105–1117. DOI: https://doi.org/10.1061/ajgeb6.0000210.

    Article  Google Scholar 

  14. de BUHAN P, GARNIER D. Three dimensional bearing capacity analysis of a foundation near a slope [J]. Soils and Foundations, 1998, 38(3): 153–163. DOI: https://doi.org/10.3208/sandf.38.3_153.

    Article  Google Scholar 

  15. YANG Xiao-li, XU Jing-shu. Three-dimensional stability of two-stage slope in inhomogeneous soils [J]. International Journal of Geomechanics, 2017, 17(7): 06016045. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000867.

    Article  Google Scholar 

  16. NADUKURU S S, MICHALOWSKI R L. Three-dimensional displacement analysis of slopes subjected to seismic loads [J]. Canadian Geotechnical Journal, 2013, 50(6): 650–661. DOI: https://doi.org/10.1139/cgj-2012-0223.

    Article  Google Scholar 

  17. PAN Qiu-jing, XU Jing-shu, DIAS D. Three-dimensional stability of a slope subjected to seepage forces [J]. International Journal of Geomechanics, 2017, 17(8): 04017035. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000913.

    Article  Google Scholar 

  18. HE Yi, HAZARIKA H, YASUFUKU N, HAN Zheng, LI Yan-ge. Three-dimensional limit analysis of seismic displacement of slope reinforced with piles [J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 446–452. DOI: https://doi.org/10.1016/j.soildyn.2015.06.015.

    Article  Google Scholar 

  19. SUN Chao-wei, CHAI Jun-rui, LUO Tao, XU Zeng-guang, MA Bin. Stability charts for pseudostatic stability analysis of rock slopes using the nonlinear Hoek-Brown strength reduction technique [J]. Advances in Civil Engineering, 2020, 3: 1–16. DOI: https://doi.org/10.1155/2020/8841090.

    Article  Google Scholar 

  20. SUN Chao-wei, CHAI Jun-rui, MA Bin, LUO Tao, GAO Ying, QIU Huan-feng. Stability charts for pseudostatic stability analysis of 3D homogeneous soil slopes using strength reduction finite element method [J]. Advances in Civil Engineering, 2019: 6025698. DOI: https://doi.org/10.1155/2019/6025698.

  21. GAZETAS G, GARINI E, ANASTASOPOULOS I, GEORGARAKOS T. Effects of near-fault ground shaking on sliding systems [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1906–1921. DOI: https://doi.org/10.1061/(asce)gt.1943-5606.0000174.

    Article  Google Scholar 

  22. KENNEDY J V, AUSTIN J, PACK R, CASS B. C-NNAP—A parallel processing architecture for binary neural networks [J]. Proceedings of ICNN’95-International Conference on Neural Networks, 1995, 2: 1037–1041. DOI: https://doi.org/10.1109/ICNN.1995.487564.

    Article  Google Scholar 

  23. CHEN Guang-hui, ZOU Jin-feng, PAN Qiu-jing, QIAN Ze-hang, SHI He-yang. Earthquake-induced slope displacements in heterogeneous soils with tensile strength cut-off [J]. Computers and Geotechnics, 2020, 124: 103637. DOI: https://doi.org/10.1016/j.compgeo.2020.103637.

    Article  Google Scholar 

  24. SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, QIN Yuan, CHEN Xing-zhou. Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique [J]. Engineering Geology, 2016, 214: 94–106. DOI: https://doi.org/10.1016/j.enggeo.2016.09.017.

    Article  Google Scholar 

  25. SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, QIN Yuan. 3D stability charts for convex and concave slopes in plan view with homogeneous soil based on the strength-reduction method [J]. International Journal of Geomechanics, 2017, 17(5): 06016034. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000809.

    Article  Google Scholar 

  26. WANG Yi-xuan, CHAI Jun-rui, CAO Jing, QIN Yuan, XU Zeng-guang, ZHANG Xian-wei. Effects of seepage on a three-layered slope and its stability analysis under rainfall conditions [J]. Natural Hazards, 2020, 102(3): 1269–1278. DOI: https://doi.org/10.1007/s11069-020-03966-1.

    Article  Google Scholar 

  27. DONALD I B, GIAM P. The ACADS slope stability programs review [C]// 6th International Symposium on Landslides, 1992, 3: 1665–1670.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-hui Chen  (陈光辉).

Additional information

Foundation item

Project(2017YFB1201204) supported by the National Key R&D Program of China; Project(1053320190957) supported by the Fundamental Research Funds for the Central Universities, China

Contributors

The overarching research goals were developed by SHI He-yang and CHEN Guang-hui. SHI He-yang edited the draft of manuscript and analyzed the calculated results. CHEN Guang-hui provided the concept and established the models. All authors replied reviewers’ comments and revised the final version.

Conflict of interest

SHI He-yang and CHEN Guang-hui declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Hy., Chen, Gh. Relationship between critical seismic acceleration coefficient and static factor of safety of 3D slopes. J. Cent. South Univ. 28, 1546–1554 (2021). https://doi.org/10.1007/s11771-021-4695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4695-9

Key words

关键词

Navigation