Skip to main content
Log in

Numerical study on settlement of high-fill airports in collapsible loess geomaterials: A case study of Lüliang Airport in Shanxi Province, China

湿陷性黄土地区高填方机场沉降的数值模拟: 以中国山西吕梁机场为例

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Foundation settlement is of great significance for high-fill engineering in collapsible loess areas. To predict the construction settlement of Lüliang Airport located in Shanxi Province, China, a plane strain finite element method considering the linear variation in the modulus, was carried out in this paper based on the results of geotechnical tests. The stress and deformation of four typical sections caused by layered fill are simulated, and then the settlement of the high-fill airport is calculated and analyzed by inputting three sets of parameters. The relative soft parameters of loess geomaterials produce more settlement than the relatively hard parameters. The thicker the filling body is, the greater the settlement is. The filling body constrained by mountains on both sides produces less settlement than the filling body constrained by a mountain on only one side even the filling thickness is almost the same. The settlement caused by the original subbase accounts for 56%–77% of the total settlement, while the fill soils themselves accounts for 23%–44% of the total settlement, which is approximately consistent with the field monitoring results. It provides a good reference for predicting the settlement of similar high-fill engineering.

摘要

湿陷性黄土地区高填方工程的地基沉降是一个重要问题。为了预测中国山西吕梁机场施工期的 沉降, 本文基于岩土试验结果, 采用了考虑模量线性变化的平面应变有限元法, 模拟了四个典型断面 分层填筑引起的应力和应变变化, 并通过输入三套参数计算和分析高填方机场的沉降。结果表明, 相 对“软”的黄土参数比相对“硬”的参数引起的沉降更大; 填筑体越厚, 沉降越大; 填筑体厚度接近相同 时, 两侧受山体约束的填筑体产生的沉降小于一侧受山体约束的填筑体产生的沉降; 原地基引起的沉 降占总沉降的56%~77%, 填筑体引起的沉降占总沉降的23%~44%, 与现场监测结果吻合性较好。该 研究对相似高填方工程沉降的预测提供了借鉴和参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SHANG J Q, TANG M, MIAO Z. Vacuum preloading consolidation of reclaimed land: A case study [J]. Canadian Geotechnical Journal, 1998, 35(5): 740–749. DOI: https://doi.org/10.1139/cgj-35-5-740.

    Article  Google Scholar 

  2. OHKURA Y. The roles and limitations of newspapers in environmental reporting — Case study: Isahaya bay land reclamation project issue [J]. Marine Pollution Bulletin, 2003, 47(1–6): 237–245. DOI: https://doi.org/10.1016/S0025-326X(03)00057-2.

    Article  Google Scholar 

  3. WANG Jia-ding, XU Yuan-jun, MA Yan, QIAO Shao-nan, FENG Kai-qiang. Study on the deformation and failure modes of filling slope in loess filling engineering: A case study at a loess mountain airport [J]. Landslides, 2018, 15(12): 2423–2435. DOI: https://doi.org/10.1007/s10346-018-1046-5.

    Article  Google Scholar 

  4. LI Pei-yue, QIAN Hui, WU Jian-hua. Accelerate research on land creation [J]. Nature, 2014, 510(7503): 29–31. DOI: https://doi.org/10.1038/510029a.

    Article  Google Scholar 

  5. LIU Yan-sui, LI Yu-heng. China’s land creation project stands firm [J]. Nature, 2014, 511(7510): 410–410. DOI: https://doi.org/10.1038/511410c.

    Article  Google Scholar 

  6. JIN Zhao. The creation of farmland by gully filling on the loess plateau: A double-edged sword [J]. Environment Science & Technology, 2014, 48(2): 883–884. DOI: https://doi.org/10.1021/es405392c.

    Article  Google Scholar 

  7. YIN Xiao-xi, CHEN Lu-wang, HE Jian-dong, FENG Xiao-qing, ZENG Wen. Characteristics of groundwater flow field after land creation engineering in the hilly and gully area of the loess plateau [J]. Arabian Journal of Geosciences, 2016, 9(14): 1–13. DOI: https://doi.org/10.1007/s12517-016-2672-7.

    Article  Google Scholar 

  8. HATAMI K, ESMAILI D, CHAN E C, MILLER G A. Laboratory performance of reduced-scale reinforced embankments at different moisture contents [J]. International Journal of Geotechnical Engineering, 2014, 8(3): 260–276. DOI: https://doi.org/10.1179/1939787914Y.0000000051.

    Article  Google Scholar 

  9. ESMAILI D, HATAMI K. Measured performance and stability analysis of large-scale reinforced model embankments at different moisture contents [J]. International Journal of Geosynthetics and Ground Engineering, 2015, 1(3): 22. DOI: https://doi.org/10.1007/s40891-015-0024-4.

    Article  Google Scholar 

  10. CHEN Dong-feng, LING Jian-ming, LI Dong-xue, ZHENG Chun-yu. Monitoring and evaluating techniques of highway subgrade safety in the operation period [J]. Road Materials and Pavement Design, 2017, 18(S3): 215–225. https://doi.org/10.1080/14680629.2017.1329876.

    Article  Google Scholar 

  11. LE KOUBY A, GUIMOND-BARRETT A, REIFFSTECK P, PANTET A, MOSSER J F, CALON N. Improvement of existing railway subgrade by deep mixing [J]. European Journal of Environmental and Civil Engineering, 2020, 24(8): 1229–1244. DOI: https://doi.org/10.1080/19648189.2018.1456977.

    Article  Google Scholar 

  12. SONNEMANN T E, HUNG J U, HOFMAN C. Mapping indigenous settlement topography in the Caribbean using drones [J]. Remote Sensing, 2016, 8(10): 791. DOI: https://doi.org/10.3390/rs8100791.

    Article  Google Scholar 

  13. YANG Meng-shi, YANG Tian-liang, ZHANG Lu, LIN Jin-xin, QIN Xiao-qiong, LIAO Ming-sheng. Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets [J]. Remote Sensing, 2018, 10(2): 329. DOI: https://doi.org/10.3390/rs10020329.

    Article  Google Scholar 

  14. WANG Hui-qiang, FENG Guang-cai, XU Bing, YU Yong-ping, LI Zhi-wei, DU Ya-nan, ZHU Jian-jun. Deriving spatio-temporal development of ground subsidence due to subway construction and operation in delta regions with PS-InSAR data: A case study in Guangzhou, China [J]. Remote Sensing, 2017, 9(10): 1004. DOI: https://doi.org/10.3390/rs9101004.

    Article  Google Scholar 

  15. Al-SHAMRANI M A. Applying the hyperbolic method and Cα/Cc concept for settlement prediction of complex organic-rich soil formations [J]. Engineering Geology, 2005, 77(1, 2): 17–34. DOI: https://doi.org/10.1016/j.enggeo.2004.07.004.

    Article  Google Scholar 

  16. KONG Xiang-xing. Research and application on the prediction method of pearl model of high filling subgrade settlement [C]//Soil Testing, Soil Stability and ground Improvement, 2018: 356–362. DOI: https://doi.org/10.1007/978-3-319-61902-6_28.

  17. JIA Liang, HUANG Guang-li. Application of a viscoelastic model to creep settlement of high-fill embankments [J]. Advances in Civil Engineering, 2019: 1–8. DOI: https://doi.org/10.1155/2019/4627174.

  18. ZENG Yu-ping. Geotechnical settlement deformation analysis of soft sub-grade embankment filling construction period based on unified hardening model [J]. Geotechnical and Geological Engineering, 2019, 37(6): 5473–5483. DOI: https://doi.org/10.1007/s10706-019-00993-z.

    Article  Google Scholar 

  19. YAO Yang-ping, HUANG Jian, WANG Nai-dong, LUO Ting, HAN Li-ming. Prediction method of creep settlement considering abrupt factors [J]. Transportation Geotechnics, 2020, 22: 100304. DOI: https://doi.org/10.1016/j.trgeo.2019.100304.

    Article  Google Scholar 

  20. LI Shi-yang, HUANG Xin, ZENG Chang-xian. Performance of an embankment foundation with sand over clay: Experimental and numerical analyses [J]. International Journal of Geomechanics, 2017, 17(6): 06016038. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000841.

    Article  Google Scholar 

  21. ZHENG Ye-wei, HATAMI K, MILLER G A. Influence of compaction moisture content on wetting-induced settlement of embankments [J]. International Journal of Geosynthetics and Ground Engineering, 2017, 3(1). DOI: https://doi.org/10.1007/s40891-017-0085-7.

    Google Scholar 

  22. XU Yan-rong, LEUNG C F, YU Jian, CHEN Wen-wu. Numerical modelling of hydro-mechanical behaviour of ground settlement due to rising water table in loess [J]. Natural Hazards, 2018, 94(1): 241–260. DOI: https://doi.org/10.1007/s11069-018-3385-x.

    Article  Google Scholar 

  23. WANG Jia-ding, LI Ping, MA Yan, LI Tong-lu. Influence of irrigation method on the infiltration in loess: Field study in the Loess Plateau [J]. Desalination and Water Treatment, 2018, 110: 298–307. DOI: https://doi.org/10.5004/dwt.2018.22329.

    Article  Google Scholar 

  24. BHANDARI A, HAN Jie. Two-dimensional physical modelling of soil displacements above trapdoors [J]. Geotechnical Research, 2018, 5(2): 68–80. DOI: https://doi.org/10.1680/jgere.18.00002.

    Article  Google Scholar 

  25. ZHANG Chong-lei, JIANG Guan-lu, LIU Xian-feng, SU Li-jun. Centrifuge modelling and analysis of ground reaction of high-speed railway embankments over medium compressibility ground [J]. KSCE Journal of Civil Engineering, 2018, 22(12): 4826–4840. DOI: https://doi.org/10.1007/s12205-017-0510-4.

    Article  Google Scholar 

  26. JANG Y S. Field-monitored settlement and other behavior of a multi-stage municipal waste landfill, Korea [J]. Environmental Earth Sciences, 2013, 69(3): 987–997. DOI: https://doi.org/10.1007/s12665-012-1982-7.

    Article  Google Scholar 

  27. JIA Liang, GUO Jian, YAO Kai. In situ monitoring of the long-term settlement of high-fill subgrade [J]. Advances in Civil Engineering, 2018: 1–9. DOI: https://doi.org/10.1155/2018/1347547.

  28. WU J T, YE X, LI J, LI G W. Field and numerical studies on the performance of high embankment built on soft soil reinforced with PHC piles [J]. Computers and Geotechnics, 2019, 107: 1–13. DOI: https://doi.org/10.1016/j.compgeo.2018.11.019.

    Article  Google Scholar 

  29. ZHENG Xiao, YANG Yu-you, ZHANG Qian-qing, WU Shi-qian, CUI Wei. A novel method for measuring traffic load-induced settlement at different layers of embankment in highway [J]. Measurement, 2019, 144: 183–191. DOI: https://doi.org/10.1016/j.measurement.2019.05.045.

    Article  Google Scholar 

  30. BJERRUM L. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings [J]. Géotechnique, 1967, 17(2): 83–118. DOI: https://doi.org/10.1680/geot.1967.17.2.83.

    Article  Google Scholar 

  31. SINGH A, MITCHELL J K. General stress-strain-time function for soils [J]. Journal of the Soil Mechanics and Foundations Division (ASCE), 1968, 94(1): 21–46. DOI: https://doi.org/10.1061/jsfeaq.0001084.

    Article  Google Scholar 

  32. WALKER L K, RAYMOND G P. The prediction of consolidation rates in a cemented clay [J]. Canadian Geotechnical Journal, 1968, 5(4): 192–216. DOI: https://doi.org/10.1139/t68-022.

    Article  Google Scholar 

  33. YIN Zong-ze, ZHANG Hai-bo, ZHU Jun-gao, LI Guo-wei. Secondary consolidation of soft soils [J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 521–526. (in Chinese)

    Google Scholar 

  34. LIU Hong, ZHANG Zhuo-yuan, HAN Wen-xi. Study on settlement of high fill foundation by centrifugal model test [J]. Journal of Southwest Jiaotong University, 2003, 38(3): 323–326. (in Chinese)

    Google Scholar 

  35. NG C W W, SADEGHI H, JAFARZADEH F. Compression and shear strength characteristics of compacted loess at high suctions [J]. Canadian Geotechnical Journal, 2017, 54(5): 690–699. DOI: https://doi.org/10.1139/cgj-2016-0347.

    Article  Google Scholar 

  36. XU L, COOP M R. The mechanics of a saturated silty loess with a transitional mode [J]. Géotechnique, 2017, 67(7): 581–596. DOI: https://doi.org/10.1680/jgeot.16.P.128.

    Article  Google Scholar 

  37. CHEN Wen-bo, LIU Kai, FENG Wei-qiang, BORANA L, YIN Jian-hua. Influence of matric suction on nonlinear time-dependent compression behavior of a granular fill material [J]. Acta Geotechnica, 2020, 15(3): 615–633. DOI: https://doi.org/10.1007/s11440-018-00761-y.

    Article  Google Scholar 

  38. MINKOFF S E, STONE C M, BRYANT S, PESZYNSKA M, WHEELER M F. Coupled fluid flow and geomechanical deformation modeling [J]. Journal of Petroleum Science and Engineering, 2003, 38(1, 2): 37–56. DOI: https://doi.org/10.1016/S0920-4105(03)00021-4.

    Article  Google Scholar 

  39. ZHU Hai-yan, TANG Xuan-he, LIU Qing-you, LI Kui-dong, XIAO Jia-lin, JIANG Shu, MCLENNAN J D. 4D multi-physical stress modelling during shale gas production: A case study of Sichuan Basin shale gas reservoir, China [J]. Journal of Petroleum Science and Engineering, 2018, 167: 929–943. DOI: https://doi.org/10.1016/j.petrol.2018.04.036.

    Article  Google Scholar 

  40. ZHU Hai-yan, TANG Xuan-he, LIU Qing-you, LIU Shu-jie, ZHANG Bin-hai, JIANG Shu, MCLENNAN J D. Permeability stress-sensitivity in 4D flow-geomechanical coupling of Shouyang CBM reservoir, Qinshui Basin, China [J]. Fuel, 2018, 232: 817–832. DOI: https://doi.org/10.1016/j.fuel.2018.05.078.

    Article  Google Scholar 

  41. XING Hao-feng, LIU Liang-liang. Field tests on influencing factors of negative skin friction for pile foundations in collapsible loess regions [J]. International Journal of Civil Engineering, 2018, 16(10): 1413–1422. DOI: https://doi.org/10.1007/s40999-018-0294-z.

    Article  Google Scholar 

  42. MOMENI M, SHAFIEE A, HEIDARI M, JAFARI M K, MAHDAVIFAR M R. Evaluation of soil collapse potential in regional scale [J]. Natural Hazards, 2012, 64(1): 459–479. DOI: https://doi.org/10.1007/s11069-012-0252-z.

    Article  Google Scholar 

  43. ZHANG De-xuan, WANG Gong-hui, LUO Chun-yong, CHEN Jun, ZHOU Yun-xi. A rapid loess flowslide triggered by irrigation in China [J]. Landslides, 2009, 6(1): 55–60. DOI: https://doi.org/10.1007/s10346-008-0135-2.

    Article  Google Scholar 

  44. ZHANG Fan-yu, PEI Xiang-Jun, CHEN Wen-wu, LIU Gao, LIANG Shou-yun. Spatial variation in geotechnical properties and topographic attributes on the different types of shallow landslides in a loess catchment, China [J]. European Journal of Environmental and Civil Engineering, 2014, 18(4): 470–488. DOI: https://doi.org/10.1080/19648189.2014.881754.

    Google Scholar 

  45. WANG Gen-long, LI Tong-lu, XING Xian-li, ZOU Yu. Research on loess flow-slides induced by rainfall in July 2013 in Yan’an, NW China [J]. Environmental Earth Sciences, 2015, 73(12): 7933–7944. DOI: https://doi.org/10.1007/s12665-014-3951-9.

    Article  Google Scholar 

  46. GU Tian-feng, WANG Jia-ding, FU Xin-ping, LIU Ya-ming. GIS and limit equilibrium in the assessment of regional slope stability and mapping of landslide susceptibility [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(4): 1105–1115. DOI: https://doi.org/10.1007/s10064-014-0689-2.

    Article  Google Scholar 

  47. YIN Yue-ping, HUANG Bo-lin, CHEN Xiao-ting, LIU Guang-ning, WANG Shi-chang. Numerical analysis on wave generated by the Qianjiangping landslide in three gorges reservoir, China [J]. Landslides, 2015, 12(2): 355–364. DOI: https://doi.org/10.1007/s10346-015-0564-7.

    Article  Google Scholar 

  48. YIN Yue-ping, XING Ai-guo, WANG Gong-hui, FENG Zhen, LI Bin, JIANG Yao. Experimental and numerical investigations of a catastrophic long-runout landslide in Zhenxiong, Yunnan, southwestern China [J]. Landslides, 2017, 14(2): 649–659. DOI: https://doi.org/10.1007/s10346-016-0729-z.

    Article  Google Scholar 

  49. ZHU Cai-hui, LI Ning. Ranking of influence factors and control technologies for the post-construction settlement of loess high-filling embankments [J]. Computers and Geotechnics, 2020, 118: 103320. DOI: https://doi.org/10.1016/j.compgeo.2019.103320.

    Article  Google Scholar 

  50. ZHU Cai-hui, Li Ning, LIU Ming-zhen, WEI Yi-feng. Spatiotemporal laws of post-construction settlement of loess-filled foundation of Lüliang airport [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 293–301. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-jie Wei  (魏英杰).

Additional information

Foundation item

Project(2020M670604) supported by the China Postdoctoral Science Foundation; Project(41790434) supported by the National Natural Science Foundation of China

Contributors

The overarching research goals were developed by JIE Yu-xin and WEI Ying-jie. JIE Yu-xin and WEI Yi-feng provided the field data, and JIE Yu-xin and WEI Ying-jie analyzed the data. JIE Yu-xin established the models and calculated the predicted settlement. JIE Yu-xin, WEI Ying-jie and WANG Du-li analyzed the calculated results. The initial draft of the manuscript was written by WEI Ying-jie, JIE Yu-xin and WANG Du-li. All authors replied to reviewer’s comments and revised the final version.

Conflict of interest

JIE Yu-xin, WEI Ying-jie, WANG Du-li and WEI Yi-feng declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, Yx., Wei, Yj., Wang, Dl. et al. Numerical study on settlement of high-fill airports in collapsible loess geomaterials: A case study of Lüliang Airport in Shanxi Province, China. J. Cent. South Univ. 28, 939–953 (2021). https://doi.org/10.1007/s11771-021-4655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4655-4

Key words

关键词

Navigation