Skip to main content
Log in

A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network

基于 NARX 神经网络的短期多步太阳辐射预测的混合分解强化模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Due to global energy depletion, solar energy technology has been widely used in the world. The output power of the solar energy systems is affected by solar radiation. Accurate short-term forecasting of solar radiation can ensure the safety of photovoltaic grids and improve the utilization efficiency of the solar energy systems. In the study, a new decomposition-boosting model using artificial intelligence is proposed to realize the solar radiation multi-step prediction. The proposed model includes four parts: signal decomposition (EWT), neural network (NARX), Adaboost and ARIMA. Three real solar radiation datasets from Changde, China were used to validate the efficiency of the proposed model. To verify the robustness of the multi-step prediction model, this experiment compared nine models and made 1, 3, and 5 steps ahead predictions for the time series. It is verified that the proposed model has the best performance among all models.

摘要

由于全球能源枯竭, 太阳能技术已在世界范围内广泛使用, 而太阳能系统的输出功率受太阳辐射影响. 准确的太阳辐射短期预测可以保证光伏电网的安全, 提高太阳能系统的利用效率. 在本研究中, 提出了一种新的利用人工智能的分解促进模型, 以实现太阳辐射多步预测. 所提出的模型包括四个部分: 信号分解(EWT), 神经网络(NARX), 强化学习(Adaboost)和 ARIMA 算法. 基于湖南常德的三个太阳辐射数据集用于检验所提出模型的预测效果. 为了验证多步预测模型的鲁棒性, 本实验对比了 9 个模型, 并对太阳辐射时间序列数据进行了 1、 3 和 5 步的超前预测. 验证了所提模型在所有模型中具有最佳的预测性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GUERMOUI M, MELGANI F, DANILO C. Multi-step ahead forecasting of daily global and direct solar radiation: A review and case study of Ghardaia region [J]. Journal of Cleaner Production, 2018, 201: 716–734. DOI: https://doi.org/10.1016/j.jclepro.2018.08.006.

    Article  Google Scholar 

  2. FATEMI S A, KUH A, FRIPP M. Parametric methods for probabilistic forecasting of solar irradiance [J]. Renewable Energy, 2018, 129: 666–676. DOI: https://doi.org/10.1016/j.renene.2018.06.022.

    Article  Google Scholar 

  3. DAVID M, LUIS M A, LAURET P. Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data [J]. International Journal of Forecasting, 2018, 34(3): 529–547. DOI: https://doi.org/10.1016/j.ijforecast.2018.02.003.

    Article  Google Scholar 

  4. MOHANTY S, PATRA P K, MOHANTY A, VISWAVANDYA M, RAY P K. Artificial intelligence based forecasting & optimization of solar cell model [J]. Optik, 2019, 181: 842–852. DOI: https://doi.org/10.1016/j.ijleo.2018.12.176.

    Article  Google Scholar 

  5. ZHENG Wei-qin, PENG Xian-gang, LU Di, ZHANG Dan, LIU Yi, LIN Zhe-hao, LIN Li-xiang. Composite quantile regression extreme learning machine with feature selection for short-term wind speed forecasting: A new approach [J]. Energy Conversion and Management, 2017, 151: 737–752. DOI: https://doi.org/10.1016/j.enconman.2017.09.029.

    Article  Google Scholar 

  6. KUSHWAHA V, PINDORIYA N M. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast [J]. Renewable Energy, 2019, 140: 124–139. DOI: https://doi.org/10.1016/j.renene.2019.03.020.

    Article  Google Scholar 

  7. BAKKER K, WHAN K, KNAP W, SCHMEITS M. Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation [J]. Solar Energy, 2019, 191: 138–150. DOI: https://doi.org/10.1016/j.solener.2019.08.044.

    Article  Google Scholar 

  8. AGUIAR L M, PEREIRA B, LAURET P, DÍAZ F, DAVID M. Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting [J]. Renewable Energy, 2016, 97: 599–610. DOI: https://doi.org/10.1016/j.renene.2016.06.018.

    Article  Google Scholar 

  9. CERVONE G, CLEMENTE-HARDING L, ALESSANDRINI S, DELLE MONACHE L. Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble [J]. Renewable Energy, 2017, 108: 274–286. DOI: https://doi.org/10.1016/j.renene.2017.02.052.

    Article  Google Scholar 

  10. INAGE S I. Development of an advection model for solar forecasting based on ground data first report: Development and verification of a fundamental model [J]. Solar Energy, 2017, 153: 414–434.

    Article  Google Scholar 

  11. SUN Yu-chi, VENUGOPAL V, BRANDT A R. Short-term solar power forecast with deep learning: Exploring optimal input and output configuration [J]. Solar Energy, 2019, 188: 730–741. DOI: https://doi.org/10.1016/j.solener.2017.05.019.

    Article  Google Scholar 

  12. YAGLI G M, YANG D Z, SRINIVASAN D. Automatic hourly solar forecasting using machine learning models [J]. Renewable and Sustainable Energy Reviews, 2019, 105: 487–498. DOI: https://doi.org/10.1016/j.rser.2019.02.006.

    Article  Google Scholar 

  13. LAN Hai, ZHANG Chi, HONG Ying-yi, HE Yin, WEN Shu-li. Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network [J]. Applied Energy, 2019, 247: 389–402. DOI: https://doi.org/10.1016/j.apenergy.2019.04.056.

    Article  Google Scholar 

  14. INAGE S I. Development of an advection model for solar forecasting based on ground data. Part II: Verification of the forecasting model over a wide geographical area [J]. Solar Energy, 2019, 180: 257–276. DOI: https://doi.org/10.1016/j.solener.2018.12.068.

    Article  Google Scholar 

  15. AYET A, TANDEO P. Nowcasting solar irradiance using an analog method and geostationary satellite images [J]. Solar Energy, 2018, 164: 301–315. DOI: https://doi.org/10.1016/j.solener.2018.02.068

    Article  Google Scholar 

  16. KAMADINATA J O, KEN T L, SUWA T. Sky image-based solar irradiance prediction methodologies using artificial neural networks [J]. Renewable Energy, 2019, 134: 837–845. DOI: https://doi.org/10.1016/j.renene.2018.11.056

    Article  Google Scholar 

  17. JANG H S, BAE K Y, PARK H S, SUNG D K. Solar power prediction based on satellite images and support vector machine [J]. IEEE Transactions on Sustainable Energy, 2016, 7(3): 1255–1263. DOI: https://doi.org/10.1109/TSTE.2016.2535466.

    Article  Google Scholar 

  18. YADAV A K, CHANDEL S S. Solar radiation prediction using artificial neural network techniques: A review [J]. Renewable and Sustainable Energy Reviews, 2014, 33: 772–781. DOI: https://doi.org/10.1016/j.rser.2013.08.055.

    Article  Google Scholar 

  19. CITAKOGLU H. Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation [J]. Computers and Electronics in Agriculture, 2015, 118: 28–37. DOI: https://doi.org/10.1016/j.compag.2015.08.020.

    Article  Google Scholar 

  20. SHARIFI S S, REZAVERDINEJAD V, NOURANI V. Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 149: 131–145. DOI: https://doi.org/10.1016/j.jastp.2016.10.008.

    Article  Google Scholar 

  21. ZHANG Y, BEAUDIN M, TAHERI R, ZAREIPOUR H, WOOD D. Day-ahead power output forecasting for small-scale solar photovoltaic electricity generators [J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2253–2262. DOI: https://doi.org/10.1109/TSG.2015.2397003.

    Article  Google Scholar 

  22. ASRARI A, WU T X, RAMOS B. A hybrid algorithm for short-term solar power prediction: Sunshine state case study [J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 582–591. DOI: https://doi.org/10.1109/TSTE.2016.2613962.

    Article  Google Scholar 

  23. QUEJ V H, ALMOROX J, ARNALDO J A, SAITO L. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 155: 62–70. DOI: https://doi.org/10.1016/j.jastp.2017.02.002.

    Article  Google Scholar 

  24. BASER F, DEMIRHAN H. A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation [J]. Energy, 2017, 123: 229–240. DOI: https://doi.org/10.1016/j.energy.2017.02.008.

    Article  Google Scholar 

  25. ZOU Ling, WANG Lun-che, XIA Li, LIN Ai-wen, HU Bo, ZHU Hong-ji. Prediction and comparison of solar radiation using improved empirical models and adaptive neuro-fuzzy inference systems [J]. Renewable Energy, 2017, 106: 343–353. DOI: https://doi.org/10.1016/j.renene.2017.01.042

    Article  Google Scholar 

  26. OZOEGWU C G. Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number [J]. Journal of Cleaner Production, 2019, 216: 1–13. DOI: https://doi.org/10.1016/j.jclepro.2019.01.096.

    Article  Google Scholar 

  27. LIU Hui, JIN Kai-rong, DUAN Zhu. Air PM2,5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China [J]. Atmospheric Pollution Research, 2019, 10(5): 1588–1600. DOI: https://doi.org/10.1016/j.apr.2019.05.007.

    Article  Google Scholar 

  28. SHANG Chuan-fu, WEI Peng-cheng. Enhanced support vector regression based forecast engine to predict solar power output [J]. Renewable Energy, 2018, 127: 269–283. DOI: https://doi.org/10.1016/j.renene.2018.04.067.

    Article  Google Scholar 

  29. MAJUMDER I, DASH P K, BISOI R. Variational mode decomposition based low rank robust kernel extreme learning machine for solar irradiation forecasting [J]. Energy Conversion and Management, 2018, 171: 787–806. DOI: https://doi.org/10.1016/j.enconman.2018.06.021.

    Article  Google Scholar 

  30. MONJOLY S, ANDRÉ M, CALIF R, SOUBDHAN T. Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach [J]. Energy, 2017, 119: 288–298. DOI: https://doi.org/10.1016/j.energy.2016.11.061.

    Article  Google Scholar 

  31. WANG Z, TIAN C, ZHU Q, HUANG M. Hourly solar radiation forecasting using a Volterra-least squares support vector machine model combined with signal decomposition [J]. Energies, 2018, 11(1): 68. DOI: https://doi.org/10.3390/en11010068.

    Article  Google Scholar 

  32. ESEYE A T, ZHANG Jian-hua, ZHENG De-hua. Short-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological information [J]. Renewable Energy, 2018, 118: 357–367. DOI: https://doi.org/10.1016/j.renene.2017.11.011.

    Article  Google Scholar 

  33. BENMOUIZA K, CHEKNANE A. Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models [J]. Theoretical and Applied Climatology, 2016, 124(3, 4): 945–958. DOI: https://doi.org/10.1007/s00704-015-1469-z.

    Article  Google Scholar 

  34. SUN Shao-long, WANG Shou-yang, ZHANG Guo-wei, ZHENG Jia-li. A decomposition-clustering-ensemble learning approach for solar radiation forecasting [J]. Solar Energy, 2018, 163: 189–199. DOI: https://doi.org/10.1016/j.solener.2018.02.006.

    Article  Google Scholar 

  35. YANG Da-zhi. On post-processing day-ahead NWP forecasts using Kalman filtering [J]. Solar Energy, 2019, 182: 179–181. DOI: https://doi.org/10.1016/j.solener.2019.02.044.

    Article  Google Scholar 

  36. FENG C, CUI M J, HODGE B M, ZHANG J. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting [J]. Applied Energy, 2017, 190: 1245–1257. DOI: https://doi.org/10.1016/j.apenergy.2017.01.043.

    Article  Google Scholar 

  37. ALFADDA A, RAHMAN S, PIPATTANASOMPORN M. Solar irradiance forecast using aerosols measurements: A data driven approach [J]. Solar Energy, 2018, 170: 924–939. DOI: https://doi.org/10.1016/j.solener.2018.05.089.

    Article  Google Scholar 

  38. LIU Hui, MI Xi-wei, LI Yan-fei. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network [J]. Energy Conversion and Management, 2018, 156: 498–514. DOI: https://doi.org/10.1016/j.enconman.2017.11.053.

    Article  Google Scholar 

  39. BENALI L, NOTTON G, FOUILLOY A, VOYANT C, DIZENE R. Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components [J]. Renewable Energy, 2019, 132: 871–884. DOI: https://doi.org/10.1016/j.renene.2018.08.044.

    Article  Google Scholar 

  40. EL MGHOUCHI Y, CHHAM E, ZEMMOURI E M, EL BOUARDI A. Assessment of different combinations of meteorological parameters for predicting daily global solar radiation using artificial neural networks [J]. Building and Environment, 2019, 149: 607–622. DOI: https://doi.org/10.1016/j.buildenv.2018.12.055.

    Article  Google Scholar 

  41. SALISU S, MUSTAFA M W, MUSTAPHA M, MOHAMMED O O. Solar radiation forecasting in Nigeria based on hybrid PSO-ANFIS and WT-ANFIS approach [J]. International Journal of Electrical and Computer Engineering (IJECE), 2019, 9(5): 3916. DOI: https://doi.org/10.11591/ijece.v9i5.pp3916-3926.

    Article  Google Scholar 

  42. GILLES J. Empirical wavelet transform [J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999–4010. DOI: https://doi.org/10.1109/TSP.2013.2265222.

    Article  MathSciNet  MATH  Google Scholar 

  43. MARCJASZ G, UNIEJEWSKI B, WERON R. On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks [J]. International Journal of Forecasting, 2019, 35(4): 1520–1532. DOI: https://doi.org/10.1016/j.ijforecast.2017.11.009.

    Article  Google Scholar 

  44. JAMIL M, ZEESHAN M. A comparative analysis of ANN and chaotic approach-based wind speed prediction in India [J]. Neural Computing and Applications, 2019, 31(10): 6807–6819. DOI: https://doi.org/10.1007/s00521-018-3513-2.

    Article  Google Scholar 

  45. WANG Yu, WANG Chun-heng, SHI Cun-zhao, XIAO Bai-hua. Short-term cloud coverage prediction using the ARIMA time series model [J]. Remote Sensing Letters, 2018, 9(3): 274–283. DOI: https://doi.org/10.1080/2150704X.2017.1418992.

    Article  Google Scholar 

  46. ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model [J]. Neurocomputing, 2003, 50: 159–175. DOI: https://doi.org/10.1016/S0925-2312(01)00702-0.

    Article  MATH  Google Scholar 

  47. FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting [J]. Journal of Computer and System Sciences, 1997, 55(1): 119–139. DOI: https://doi.org/10.1006/jcss.1997.1504.

    Article  MathSciNet  MATH  Google Scholar 

  48. XING H J, LIU W T. Robust AdaBoost based ensemble of one-class support vector machines[J]. Information Fusion, 2020, 55: 45–58. DOI: https://doi.org/10.1016/j.inffus.2019.08.002.

    Article  Google Scholar 

  49. LI Lin, HUANG Yi-xiang, TAO Jian-feng, LIU Cheng-liang, LI Kai. Featured temporal segmentation method and AdaBoost-BP detector for internal leakage evaluation of a hydraulic cylinder [J]. Measurement, 2018, 130: 279–289. DOI: https://doi.org/10.1016/j.measurement.2018.08.029.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HUANG Jia-hao performed writing original draft, review, editing and experimental validation. LIU Hui performed proposing forecasting ideas, writing original draft and, review and experimental validation.

Corresponding author

Correspondence to Hui Liu  (刘辉).

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Foundation item: Project(2020TJ-Q06) supported by Hunan Provincial Science & Technology Talent Support, China; Project(KQ1707017) supported by the Changsha Science & Technology, China; Project(2019CX005) supported by the Innovation Driven Project of the Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Jh., Liu, H. A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network. J. Cent. South Univ. 28, 507–526 (2021). https://doi.org/10.1007/s11771-021-4618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4618-9

Key words

关键词

Navigation