Skip to main content
Log in

A unified prediction solution for vibro-acoustic analysis of composite laminated elliptical shells immersed in air

一种对空气中复合材料层合椭圆壳声振分析的统一预测方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed. A variational method and multi-segment technique are used to formulate the dynamic model. The sound radiation of the exterior fluid field is calculated by a spectral Kirchhoff-Helmholtz integral formulation. The variables containing displacements and sound pressure are expanded by the combination of Fourier series and Chebyshev orthogonal polynomials. The collocation points are introduced to construct an algebraic system of acoustic integral equations, where these points are distributed on the roots of Chebyshev polynomials, and the non-uniqueness solution of system is eliminated by a combined Helmholtz integral. Numerical examples for sound radiation problems of composite laminated elliptical shells are presented and individual contributions of the circumferential modes to the acoustical results of composite laminated elliptical shells are also given. The effects of geometric and material parameters on sound radiation of composite laminated elliptical shells are also investigated.

摘要

提出了一种半解析法对空气中的复合材料层合椭圆壳进行振动声分析. 采用变分法和分段技术建立动力学模型. 采用基尔霍夫-亥姆霍兹积分公式计算了外部流场的声辐射. 用傅立叶级数和切比雪夫正交多项式组合展开了包含位移和声压的变量. 引入配置点构造声积分方程代数系统, 这些点分布在切比雪夫多项式的根上, 并用组合亥姆霍兹积分消除系统的非唯一解. 给出了复合材料层合椭圆壳声辐射问题的数值算例, 并给出了周向模态对复合材料层合椭圆壳声学结果的影响. 研究了几何参数和材料参数对复合材料层合椭圆壳声辐射的影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TORNABENE F, VIOLA E, FANTUZZI N. General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels [J]. Composite Structures, 2013, 104: 94–117. DOI: https://doi.org/10.1016/j.compstruct.2013.04.009.

    Article  Google Scholar 

  2. TORNABENE F, VIOLA E. Static analysis of functionally graded doubly-curved shells and panels of revolution [J]. Meccanica (Milan), 2012, 48(4): 901–930. DOI: https://doi.org/10.1007/s11012-012-9643-1.

    Article  MathSciNet  Google Scholar 

  3. TORNABENE F, FANTUZZI N, BACCIOCCHI M, VIOLA, E. Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells [J]. Composites Part B: Engineering, 2016, 89: 187–218. DOI: https://doi.org/10.1016/j.compositesb.2015.11.016.

    Article  Google Scholar 

  4. TORNABENE F, FANTUZZI N, BACCIOCCHI M. Higher-order structural theories for the static analysis of doubly-curved laminated composite panels reinforced by curvilinear fibers [J]. Thin-Walled Structures, 2016, 102: 222–245. DOI: https://doi.org/10.1016/j.tws.2016.01.029.

    Article  Google Scholar 

  5. TORNABENE F, FANTUZZI N, BACCIOCCHI M. Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories [J]. Composites Part B: Engineering, 2014, 67: 490–509. DOI: https://doi.org/10.1016/j.compositesb.2014.08.012.

    Article  Google Scholar 

  6. TORNABENE F. On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded materials [J]. Thin-Walled Structures, 2019, 140: 85–98. DOI: https://doi.org/10.1016/j.tws.2019.03.018.

    Article  Google Scholar 

  7. WANG Qing-shan, CHOE Kwang-nam, SHI Dong-yan, SIN Ki-nam. Vibration analysis of the coupled doubly-curved revolution shell structures by using Jacobi-Ritz method [J]. International Journal of Mechanical Sciences, 2018, 135: 517–531. DOI: https://doi.org/10.1016/j.ijmecsci.2017.12.002.

    Article  Google Scholar 

  8. CHOE Kwang-nam, TANG Jin-yuan, SHUAI Ci-jun, WANG Ai-lun, WANG Qing-shan. Free vibration analysis of coupled functionally graded (FG) doubly-curved revolution shell structures with general boundary conditions [J]. Composite Structures, 2018, 194: 413–432. DOI: https://doi.org/10.1016/j.compstruct.2018.04.035.

    Article  Google Scholar 

  9. LI Hai-chao, PANG Fu-zhen, MIAO Xu-hong, DU Yuan, TIAN Hong-ye. A semi-analytical method for vibration analysis of stepped doubly-curved shells of revolution with arbitrary boundary conditions [J]. Thin-Walled Structures, 2018, 129: 125–144. DOI: https://doi.org/10.1016/j.tws.2018.03.026.

    Article  Google Scholar 

  10. PANG Fu-zhen, LI Hai-chao, WANG Xue-ren, MIAO Xu-hong, LI Shuo. A semi analytical method for the free vibration of doubly-curved shells of revolution [J]. Computers & Mathematics with Applications, 2018, 75(9): 3249–3268. DOI: https://doi.org/10.1016/j.camwa.2018.01.045.

    Article  MathSciNet  Google Scholar 

  11. PANG Fu-zhen, LI Hai-chao, JING Feng-mei, DU Yuan. Application of first-order shear deformation theory on vibration analysis of stepped functionally graded paraboloidal shell with general edge constraints [J]. Materials, 2018, 12(1): 69. DOI: https://doi.org/10.3390/ma12010069.

    Article  Google Scholar 

  12. YE Tian-gui, JIN Guo-yong, ZHANG Yan-tao. Vibrations of composite laminated doubly-curved shells of revolution with elastic restraints including shear deformation, rotary inertia and initial curvature [J]. Composite Structures, 2015, 133: 202–225. DOI: https://doi.org/10.1016/j.compstruct.2015.07.051.

    Article  Google Scholar 

  13. JIN Guo-yong, YE Tian-gui, WANG Xue-ren, MIAO Xu-hong. A unified solution for the vibration analysis of FGM doubly-curved shells of revolution with arbitrary boundary conditions [J]. Composites Part B: Engineering, 2016, 89: 230–252. DOI: https://doi.org/10.1016/j.compositesb.2015.11.015.

    Article  Google Scholar 

  14. TALEBITOOTI R, ANBARDAN V S. Haar wavelet discretization approach for frequency analysis of the functionally graded generally doubly-curved shells of revolution [J]. Applied Mathematical Modelling, 2019, 67: 645–675. DOI: https://doi.org/10.1016/j.apm.2018.11.044.

    Article  MathSciNet  Google Scholar 

  15. XIE Kun, CHEN Mei-xia, DONG Wan-jing, LI Wen-cheng. A unified semi-analytical method for vibration analysis of shells of revolution stiffened by rings with T cross-section [J]. Thin-Walled Structures, 2019, 139: 412–431. DOI: https://doi.org/10.1016/j.tws.2019.02.018.

    Article  Google Scholar 

  16. ZHEN Ni, ZHOU Kai, HUANG Xiu-chang, HUA Hong-xing. Free vibration of stiffened laminated shells of revolution with a free-form meridian and general boundary conditions [J]. International Journal of Mechanical Sciences, 2019, 157–158: 561–573. DOI: https://doi.org/10.1016/j.ijmecsci.2019.03.040.

    Google Scholar 

  17. BÉROT F, PESEUX B. Vibro-acoustic behavior of submerged cylindrical shells: analytical formulation and numerical model [J]. Journal of Fluids and Structures, 1998, 12(8): 959–1003. DOI: https://doi.org/10.1006/jfls.1998.0179.

    Article  Google Scholar 

  18. CARESTA M, KESSISSOGLOU N J. Low frequency structural and acoustic responses of a submarine hull under eccentric axial excitation from the propulsion system [J]. Acoustics Australia, 2008, 36(2): 47–52. DOI: https://doi.org/10.1016/j.jsv.2008.01.058.

    Google Scholar 

  19. CARESTA M, KESSISSOGLOU N J. Acoustic signature of a submarine hull under harmonic excitation [J]. Applied Acoustics, 2010, 71(1): 17–31. DOI: https://doi.org/10.1016/j.apacoust.2009.07.008.

    Article  Google Scholar 

  20. CHEN Lu-yun, LIANG Xiao-feng YI Hong. Vibro-acoustic characteristics of cylindrical shells with complex acoustic boundary conditions [J]. Ocean Engineering, 2016, 126: 12–21. DOI: https://doi.org/10.1016/j.oceaneng.2016.08.028.

    Article  Google Scholar 

  21. GUO Y P. Acoustic radiation from cylindrical shells due to internal forcing [J]. The Journal of the Acoustical Society of America, 1996, 99(3): 1495–1505. DOI: https://doi.org/10.1121/1.414728.

    Article  Google Scholar 

  22. ZOU Ming-song, LIU Shu-xiao, QI Li-bo. An analytical formulation for the underwater acoustic radiation of a cylindrical shell with an internal flexural floor based on the reciprocity theorem [J]. Applied Acoustics, 2019, 154: 18–27. DOI: https://doi.org/10.1016/j.apacoust.2019.04.017.

    Article  Google Scholar 

  23. LIU Shu-xiao, ZOU Ming-song, JIANG Ling-wen, ZHAO Xiao-yu. Vibratory response and acoustic radiation of a finite cylindrical shell partially covered with circumferential compliant layers [J]. Applied Acoustics, 2018, 141: 188–197. DOI: https://doi.org/10.1016/j.apacoust.2018.07.012.

    Article  Google Scholar 

  24. WANG Xian-zhong, CHEN Di, XIONG Ye-ping, JIANG Quan-zhou, ZUO Ying-ying. Experiment and modeling of vibro-acoustic response of a stiffened submerged cylindrical shell with force and acoustic excitation [J]. Results in Physics, 2018, 11: 315–324. DOI: https://doi.org/10.1016/j.rinp.2018.09.017.

    Article  Google Scholar 

  25. CHOE Kwang-nam, WANG Qing-shan, TANG Jin-yuan, SHUAI Ci-jun. Vibration analysis for coupled composite laminated axis-symmetric doubly-curved revolution shell structures by unified Jacobi-Ritz method [J]. Composite Structures, 2018, 194: 136–157. DOI: https://doi.org/10.1016/j.compstruct.2018.03.095.

    Article  Google Scholar 

  26. MARBURG S, NOLTE B. Computational acoustics of noise propagation in fluids-finite and boundary element methods [M]. Verlag Berlin Heidelberg: Springer, 2008. ISBN: 9783642096082.

    Book  Google Scholar 

  27. SCHENCK H A. Improved integral formulation for acoustic radiation problems [J]. The Journal of the Acoustical Society of America, 1968, 44(1): 41–58. DOI: https://doi.org/10.1121/1.1911085.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GUAN Xian-lei is responsible for writing original draft, reviewing, editing and formal analysis; ZHONG Rui is in charge of software, data and curation; QIN Bin takes part in the writing (reviewing and editing) and methodology; WANG Qing-shan plays the role of validation and writing (reviewing and editing) and SHUAI Ci-jun participates in the writing (reviewing and editing).

Corresponding author

Correspondence to Bin Qin  (秦斌).

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Foundation item: Project(51705537) supported by the National Natural Science Foundation of China; Project(2018JJ3661) supported by the Natural Science Foundation of Hunan Province of China; Project(ZZYJKT2018-11) supported by State Key Laboratory of High Performance Complex Manufacturing, China

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Xl., Zhong, R., Qin, B. et al. A unified prediction solution for vibro-acoustic analysis of composite laminated elliptical shells immersed in air. J. Cent. South Univ. 28, 429–444 (2021). https://doi.org/10.1007/s11771-021-4613-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4613-1

Key words

关键词

Navigation