Skip to main content
Log in

Analysis of axial force of double circular arc helical gear hydraulic pump and design of its balancing device

双圆弧斜齿齿轮液压泵轴向力的分析及其平衡装置设计

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In view of the axial force produced in the working process of double arc helical gear hydraulic pump, the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axial force was obtained and the relationship between the axial force and structure parameters of gears was clarified. In order to balance the axial force, the pressure oil in the high pressure area was introduced into the end face of the plunger to press the plunger against the gear shaft, and the hydrostatic bearing whose type is plunger at the end of the shaft was designed. In order to verify the balance effect of axial force, the leakage owing to end clearance and volume efficiency of gear hydraulic pump before and after the balancing process was analyzed. This paper provides a new analysis idea and balance scheme for the axial force produced in the working process of the double arc helical gear hydraulic pump, which can reduce the leakage owing to end clearance caused by the axial force and improve the volume efficiency of the gear hydraulic pump.

摘要

针对双圆弧斜齿齿轮液压泵在工作过程中所产生的轴向力, 采用曲线与曲面微分方程, 对其轴向力进行求解, 明确了轴向力与齿轮结构参数之间的关系. 为平衡轴向力, 采取了将高压区的压力油引入柱塞端面使得柱塞压向齿轮轴的方式, 并设计了轴端柱塞式静压轴承. 为验证轴向力的平衡效果, 对平衡之前和平衡之后齿轮液压泵的端面间隙泄漏量和容积效率进行了分析. 本文为双圆弧斜齿齿轮液压泵在工作过程中所产生的轴向力提供了一种新的分析思路和平衡方案, 可以降低以轴向力而带来的端面间隙泄漏量, 提高齿轮液压泵的容积效率.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GAMAUF M. Hydraulic system maintenance—tips and advice: Though safe and reliable, vigilance is essential during a repair [J]. Econometrica, 2014, 59(3): 711–730. DOI: https://doi.org/10.2307/2938225.

    Google Scholar 

  2. HUO Xing-xing, WANG Xu-yang, GE Tong. Impulse control method for hydraulic propulsion system used in 3500 m work-class ROV [J]. Applied Ocean Research, 2016, 60: 75–83. DOI: https://doi.org/10.1016/j.apor.2016.08.008.

    Article  Google Scholar 

  3. MOHAMAD B, MAHYAR N, MOHAMMD Z. Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems [J]. ISA Transactions, 2018, 76: 235–245. DOI: https://doi.org/10.1016/j.isatra.2018.03.014.

    Article  Google Scholar 

  4. WU De-fa, LIU Ying-shun, LI Dong-lin. Effects of materials on the noise of a water hydraulic pump used in submersible [J]. Ocean Engineering, 2017, 131(1): 107–113. DOI: https://doi.org/10.1016/j.ocearieng.2016.12.022.

    Article  Google Scholar 

  5. BATTARRA M, MUCCHHI E. Incipient cavitation detection in external gear pumps by means of vibro-acoustic measurements [J]. Measurement, 2018, 129: 51–61. DOI: https://doi.org/10.1016/j.measurement.2018.07.013.

    Article  Google Scholar 

  6. ZHOU Yang, CHE Bo-wen, YUAN Ci. The design and analysis of a high-speed circular arc gear pump journal bearing [J]. Advances in Mechanical Engineering, 2018, 10(12): 1–11. DOI: https://doi.org/10.1177/1687814018819288.

    Google Scholar 

  7. LI Ge-qiang, ZHANG Long-fei, HAN Wei-feng. Profile design and displacement analysis of the low pulsating gear pump [J]. Advances in Mechanical Engineering, 2018, 10(3): 1–11. DOI: https://doi.org/10.1177/1687814018767003.

    Google Scholar 

  8. BAIR B, SUNG M, WANG J, CHEN C. Tooth profile generation and analysis of oval gears with circular-arc teeth [J]. Mechanism and Machine Theory, 2009, 44(6): 1306–1317. DOI: https://doi.org/10.1016/j.mechmachtheory.2008.07.003.

    Article  MATH  Google Scholar 

  9. CHOI T, KIM M, LEE G, JUNG S. Design of rotor for internal gear pump using cycloid and circular-arc curves [J]. Journal of Mechanical Design, 2012, 134(1): 1–12. DOI: https://doi.org/10.1115/1.4004423.

    Article  Google Scholar 

  10. ZHOU Yang, HAO Ming-hui. The study of leakage of circular arc-involute-circular arc gear pump [J]. Advances in Mechanical Engineering, 2017, 9(9): 1–9. DOI: https://doi.org/10.1177/1687814017720082.

    Article  Google Scholar 

  11. LIU Yuan-wei, FAN Jia. Design of asymmetric double circular arc gear for large-scale high-pressure gear pumps [J]. Advanced Material Research, 2011, 181–182: 361–365. DOI: https://doi.org/10.4028/www.scientific.net/AMR.181-182.361.

    Google Scholar 

  12. ZHOU Yang, HAO Shuang-hui, HAO Ming-hui. Design and performance analysis of a circular-arc gear pump operating at high pressure and high speed [J]. Proceeding of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(2): 189–205. DOI: https://doi.org/10.1177/0954406215572435.

    Google Scholar 

  13. LIU Da-wei, BA Yan-bo, REN Ting-zhi. Flow fluctuation abatement of high-order elliptical gear pump by external noncircular gear drive [J]. Mechanism and Machine Theory, 2019, 134: 338–348. DOI: https://doi.org/10.1016/j.mechmachtheory.2019.01.011.

    Article  Google Scholar 

  14. FNU R, ANDREA V. External gear pumps operating with non-Newtonian fluids: Modeling and experimental validation [J]. Mechanical Systems and Signal Processing, 2018, 106: 284–302. DOI:https://doi.org/10.1016/j.ymssp.2017.12.042.

    Article  Google Scholar 

  15. INAGUMA Y. Friction torque characteristics of an internal gear pump [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 9(225): 1523–1534. DOI: https://doi.org/10.1177/0954406211399659.

    Google Scholar 

  16. MO Shuai, ZHANG Yi-du, WU Qiong, HARUO H, SHIGEKI M. Research on natural characteristics of double-helical star gearing system for GTF aero-engine [J]. Mechanism & Machine Theory, 2016, 106: 166–189. DOI:https://doi.org/10.1016/j.mechmachtheory.2016.09.001.

    Article  Google Scholar 

  17. GUO An-fu, JIANG Ting-ting, WANG Tong, HU Yun-ping, ZHANG Da-jiang. Numerical simulation on the flow field of external gear pump based on FLUENT [J]. Applied Mechanics & Materials, 2014, 556–562: 1421–1425. DOI: https://doi.org/10.4028/www.scientific.net/AMM.556-562.1421.

    Article  Google Scholar 

  18. HOI Y, MENG H, WOODWARD S H, BENDOK B R, HANEL R A, GUTERMAN L R, HOPKINS L N. Effects of arterial geometry on aneurysm growth: Three-dimensional computational fluid dynamics study [J]. Journal of Neurosurgery, 2004, 101(4): 676–681. DOI: https://doi.org/10.3171/jns.2004.101.4.0676.

    Article  Google Scholar 

  19. ARIHANT S, CHOI S, KIM K, KIM J. Leakage loss estimation and parametric study on the effect of twist in rotor shape for harnessing Pico hydropower [J]. Renewable Energy, 2020, 151: 1240–1249. DOI: https://doi.org/10.1016/j.renene.2019.11.124.

    Article  Google Scholar 

  20. DINA Z, MANOJ K T, ASHOKK G, DHRUBJYOTI S. A review of leakage detection strategies for pressurised pipeline in steady-state [J]. Engineering Failure Analysis, 2020, 109: 104264. DOI: https://doi.org/10.1016/j.engfailanal.2019.104264.

    Article  Google Scholar 

  21. HE Xiang-yu, XIAO Guang-xin, HU Bi-li, TANG Li-sha, TANG Hong-bin, HE Shang-hong, HE Zhi-yong. The applications of energy regeneration and conversion technologies based on hydraulic transmission systems: A review [J]. Energy Conversion and Management, 2020, 205: 112413. DOI: https://doi.org/10.1016/j.enconman.2019.112413.

    Article  Google Scholar 

  22. PAFFONI B. Pressure and film thickness in a trochoidal hydrostatic gear pump [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2003, 217(4): 179–187. DOI: https://doi.org/10.1243/095441003769700744.

    Article  Google Scholar 

  23. MUCCHI E, DALPIAZ G, RIVOLA A. Elastodynamic analysis of a gear pump. Part II: Meshing phenomena and simulation results [J]. Mechanical Systems and Signal Processing, 2010, 24(7): 2180–2197. DOI: https://doi.org/10.1016/j.ymssp.2010.02.004.

    Article  Google Scholar 

  24. BATTARRA M, MUCCHHI E. On the assessment of lump parameter models for gear pump performance prediction [J]. Simulation Modelling Practice and Theory, 2019, 99(1): 1–22. DOI: https://doi.org/10.1016/j.simpat.2019.102008.

    Google Scholar 

  25. HUANG Yun, JIAHUA Suo-lang, XIAO Gui-jian, DAI Wen-tao, HE Shui, LI Wei. Study on the surface topography of the vibration-assisted belt grinding of the pump gear [J]. The International Journal of Advanced Manufacturing Technology, 2020, 106: 719–729. DOI: https://doi.org/10.1007/s00170-019-04645-7.

    Article  Google Scholar 

  26. CHAI Hong-qiang, YANG Guo-lai, WU Guo-guo, BAI Gui-xiang, LI Wen-qi. Research on flow characteristics of straight line conjugate[J]. Internal Meshing Gear Pump Process, 8(3): 269–296. DOI: https://doi.org/10.3390/pr803026.

Download references

Author information

Authors and Affiliations

Authors

Contributions

WU Yi-fei wrote the draft of the whole manuscript. GE Pei-qi provided the concept and edited the draft. BI Wen-bo gave some advice on the design of the hydrostatic bearing system.

Corresponding author

Correspondence to Pei-qi Ge  (葛培琪).

Ethics declarations

WU Yi-fei, GE Pei-qi and BI Wen-bo declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Yf., Ge, Pq. & Bi, Wb. Analysis of axial force of double circular arc helical gear hydraulic pump and design of its balancing device. J. Cent. South Univ. 28, 418–428 (2021). https://doi.org/10.1007/s11771-021-4612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4612-2

Key words

关键词

Navigation