Skip to main content
Log in

Combustion characteristics of supersonic strut-cavity combustor under plasma jet-assisted combustion

等离子体射流助燃下支板凹腔燃烧室的燃烧特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method, but currently it is mostly combined with the traditional wall fuel injection method, while the application combined with the central fuel injection method is less. In order to expand the combustion range, the plasma jet was introduced into a strut-cavity combustor with an alternating-wedge. The effects of total pressure of strut fuel injection, total pressure of cavity fuel injection, total pressure of plasma jet injection and plasma jet media on the combustion characteristics were analyzed in supersonic flow by numerical calculations in a three-dimensional domain. The combustion field structure, wall pressure distribution, combustion efficiency and distribution of H2O at the exit of the combustor with different injection conditions were analyzed. The results show that the combustion efficiency decreases with the increase of the strut fuel injection total pressure. However, the combustion area downstream increases when the total pressure of the strut fuel injection increases within the proper range. The combustion range is expanded and the combustion efficiency is improved when the cavity fuel injection total pressure is increased within the range of 0.5–2.0 MPa, but a sharp drop in combustion efficiency can be found due to limited fuel mixing when the total injection pressure of the cavity fuel is excessively increased. With the increased total injection pressure of the plasma jet, the height of the cavity shear layer is raised and the equivalence ratio of the gas mixture in the cavity is improved. When the total pressure of the plasma jet is 1.25 MPa, the combustion efficiency reaches a maximum of 82.1%. The combustion-assisted effect of different plasma jet media is significantly different. When the medium of the plasma jet is O2, the combustion-assisted effect on the combustor is most significant.

摘要

等离子体射流作为一种有效的点火助燃方式在超声速燃烧室中得到了广泛的应用, 但是目前大 都是与传统的壁面燃料喷注方式相结合, 而与中心燃料喷注方式的结合较少。为了扩大燃烧范围, 本 文将等离子体射流引入了带有交替尾缘结构的支板-凹腔燃烧室中。通过三维数值计算, 研究了超声 速气流中支板燃料喷注总压、凹腔燃料喷注总压、等离子体射流喷注总压和等离子体射流介质对燃烧 特性的影响, 分析了不同喷注条件下的燃烧场结构、壁压分布、燃烧效率和燃烧室出口水组分的分布 情况。研究结果表明:燃烧效率随着支板燃料喷注总压的增加而降低, 但当在合适的范围内增加支板 燃料喷注总压时, 燃烧室下游的燃烧区域也有所增加。当凹腔燃料喷注总压在0.5~2.0 MPa 的范围内 增加时, 燃烧室的燃烧区域和燃烧效率都有明显提升;但过度地增加凹腔燃料喷注总压, 由于燃料的 混合受限, 燃烧效率急剧下降。随着等离子体射流喷注总压的增加, 凹腔剪切层的高度抬升, 凹腔内 的混气当量比也得到改善, 有效地促进了燃烧。当等离子射流的喷注总压为1.25 MPa 时, 燃烧效率 达到最高的82.1%。不同等离子射流介质的助燃效果有着显著的差异。当等离子射流的介质为O2 时, 对燃烧室的助燃作用最为明显。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PENG Qing-guo, YANG Wen-ming, E Jia-qiang, XU Hong-peng, LI Zhen-wei, YU Wen-bin, TU Yao-jie, WU Yi-feng. Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications [J]. Energy Conversion and Management, 2019, 200: 112086. DOI: https://doi.org/10.1016/j.enconman.2019.112086.

    Article  Google Scholar 

  2. PENG Qing-guo, E Jia-qiang, ZHANG Zhi-qing, HUA Wen-yu, ZHAO Xiao-huan. Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor [J]. Applied Thermal Engineering, 2018, 130: 541–551. DOI: https://doi.org/10.1016/j.applthermaleng.2017.11.016.

    Article  Google Scholar 

  3. E Jia-qiang, WU Jiang-hua, LIU Teng, CHEN Jing-wei, DENG Yuan-wang, PENG Qing-guo. Effects analysis on catalytic combustion characteristic of hydrogen/air in micro turbine engine by fuzzy grey relation method [J]. Journal of Central South University, 2019, 26(8): 2214–2223. DOI: https://doi.org/10.1007/s11771-019-4167-7.

    Article  Google Scholar 

  4. DING Meng, YU Yong, LIANG Ji-han, LIU Wei-dong, WANG Zhen-guo. Experimental investigation of ignition technology in liquid hydrocarbon fueled scramjet combustor [J]. Journal of Propulsion Technology, 2004, 25(6): 566–569. DOI: https://doi.org/10.3321/j.issn:1001-4055.2004.06.020. (in Chinese)

    Google Scholar 

  5. TETLOW M, DOOLAN C. Comparison of hydrogen and hydrocarbon-fueled scramjet engines for orbital insertion [J]. Journal of Spacecraft and Rockets, 2007, 44(2): 365–373. DOI: https://doi.org/10.2514/1.24739.

    Article  Google Scholar 

  6. SUNAMI T, MURAKAMI A, KUDO K, KODERA M, NISHIOKA M. Mixing and combustion control strategies for efficient scramjet operation in wide range of flight mach numbers [C]//11th AIAA/AAAF International Conference. 2002: 5116. DOI: https://doi.org/10.2514/6.2002-5116.

  7. GRADY N, PITZ R W, CARTER C D. Supersonic flow over a ramped-wall cavity flame holder with an upstream strut [J]. Journal of Propulsion and Power, 2012, 28(5): 982–990. DOI: https://doi.org/10.2514/1.B34394

    Article  Google Scholar 

  8. ZHAO Yan-hui, LIANG Jian-han, ZHAO Yu-xin. Non-reacting flow visualization of supersonic combustor based on cavity and cavity-strut flameholder [J]. Acta Astronautica, 2016, 121: 282–291. DOI: https://doi.org/10.1016/j.actaastro.2015.12.040.

    Article  Google Scholar 

  9. HSU K, CARTER C, GRUBER M R, BARHORST T, SMITH S. Experimental study of cavity-strut combustion in supersonic flow[J]. Journal of Propulsion & Power, 2007, 26(6): 1237–1246. DOI: https://doi.org/10.2514/1.45767.

    Article  Google Scholar 

  10. SATHIYAMOORTHY K, DANISH T H, SRINIVA J, MANJUNATH P. Experimental investigation of supersonic combustion in a strut-cavity based combustor [J]. Acta Astronautica, 2018, 148: 285–293. DOI: https://doi.org/10.1016/j.actaastro.2018.05.014.

    Article  Google Scholar 

  11. LI Chao-long, XIA Zhi-xun, MA Li-kun, ZHAO Xiang, CHEN Bin-bin. Experimental and numerical study of solid rocket scramjet combustor equipped with combined cavity and strut device [J]. Acta Astronautica, 2019, 162: 145–154. DOI: https://doi.org/10.1016/j.actaastro.2019.05.057.

    Article  Google Scholar 

  12. SUNEETHA L, RANDIVE P, PANDEY K M. Numerical investigation on implication of strut profile on combustion characteristics in a cavity based scramjet combustor [J]. Acta Astronautica, 2020, 170: 623–636. DOI: https://doi.org/10.1016/j.actaastro.2020.02.025.

    Article  Google Scholar 

  13. MIAO Jun-jie, FAN Yu-xin. Influence of strut on cavity at subsonic speeds: Ignition characteristics [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 0954410020904832. DOI: https://doi.org/10.1177/0954410019843726.

  14. SONG Wen-yan, ZHANG Dong-qing, SHI De-yong. Numerical study of combinations of strut and cavity in a round supersonic combustor [J]. International Journal of Turbo & Jet-Engines, 2019, 36(3): 219–231. DOI: https://doi.org/10.1515/tjj-2016-0069.

    Article  Google Scholar 

  15. HONG Yan-ji, XI Wen-xiong, LI Lan, ZHANG Peng. Comments on researches of mechanism for plasma assisted combustion and applications in high speed flow-field [J]. Journal of Propulsion Technology, 2018, 39(10): 1–15. DOI: https://doi.org/10.13675/j.cnki.tjjs.2018.10.011. (in Chinese)

    Google Scholar 

  16. JACOBSEN L S, CARTER C D, BAURLE R A. Toward plasma-assisted ignition in scramjets [J]. Journal of Propulsion and Power, 2008, 24(4): 641–654. DOI: https://doi.org/10.2514/6.2003-871.

    Article  Google Scholar 

  17. KIYOTAKA S, RYOICHI K, TAKESHIk T. Two-stage plasma torch ignition in supersonic airflows [C]//37th Joint Propulsion Conference and Exhibit. 2001: 3740. DOI: https://doi.org/10.2514/6.2001-3740.

  18. MACHERET S, SHNEIDER M, MILES R. Energy efficiency of plasma-assisted combustion in ram/scramjet engines [C]//36th AIAA Plasmadynamics and Lasers Conference. 2005: 5371. DOI: https://doi.org/10.2514/6.2005-5371.

  19. KIMURA I, AOKI H, KATO M. The use of a plasma jet for flame stabilization and promotion of combustion in supersonic air flows [J]. Combustion and Flame, 1981, 42: 297–305. DOI: https://doi.org/10.1016/0010-2180(81)90164-4.

    Article  Google Scholar 

  20. TAKITA K. Ignition and flame-holding by oxygen, nitrogen and argon plasma torches in supersonic airflow [J]. Combustion and Flame, 2002, 128: 301–313. DOI: https://doi.org/10.1016/S0010-2180(01)00354-6.

    Article  Google Scholar 

  21. MURAKAMI K, NISHIKAWA A, TAKITA K. Ignition characteristics of hydrocarbon fuels by plasma torch in supersonic flow [C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies, 2003: 6939. DOI: https://doi.org/10.2514/6.2003-6939.

  22. TAKITA K, NAKANE H, MASUYA G. Optimization of double plasma jet torches in a scramjet combustor [J]. Proceedings of the Combustion Institute, 2007, 31: 2513–2520. DOI: https://doi.org/10.1016/j.proci.2006.07.054.

    Article  Google Scholar 

  23. WEI Bao-xi, OU Dong, YAN Ming-lei, XU Xu. Ignition and flame holding ability of plasma torch igniter in a supersonic flow [J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12): 1572–1576. DOI: https://doi.org/10.13700/j.bh.1001-5965.2012.12.022. (in Chinese)

    Google Scholar 

  24. DUAN Li-wei, HONG Yan-ji. Effects of plasma torch jet frequency on supersonic combustion characteristics [J]. Journal of Propulsion Technology, 2015, 36(10): 1539–1546. DOI: https://doi.org/10.13675/j.cnki.tjjs.2015.10.014. (in Chinese)

    Google Scholar 

  25. LIU Yi, DOU Zhi-guo, YANG Bo, ZHANG Peng. Experimental investigation on ignition of ethylene/air by plasma jet in supersonic combustor [J]. Journal of Propulsion Technology, 2017, 38(7): 1532–1538. DOI: https://doi.org/10.13675/j.cnki.tjjs.2017.07.012. (in Chinese)

    Google Scholar 

  26. DOU Zhi-guo, LIU Yi, ZHANG Peng, YANG Bo. Effect of equivalence ratio on flow field and combustion characteristics of plasma ignition in supersonic combustor [J]. High Voltage Engineering, 2017, 43(12): 3981–3987. DOI: https://doi.org/10.13336/j.1003-6520.hve.20171127022. (in Chinese)

    Google Scholar 

  27. MASUYA G, KUDOU K, MURAKAMI A. Some governing parameters of plasma torch igniter/flameholder in a scramjet combustor [J]. Journal of Propulsion and Power, 1993, 9(2): 176–181. DOI: https://doi.org/10.2514/3.23606.

    Article  Google Scholar 

  28. MINATO R, NIIOKA T, SUGIYAMA H, MIZOBATA K. Numerical analysis of supersonic combustion by a plasma torch [C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. 2005: 3424. DOI: https://doi.org/10.2514/6.2005-3424.

  29. SONG Zhen-xing, HE Lin-ming, ZHANG Jian-bang, ZHAO Bing-bing, LIU Jian-xing. Three-dimensional numerical simulation of supersonic plasma ignition process [J]. High Power Laser and Particle Beams, 2012, 24(11): 2746–2750. DOI: https://doi.org/10.3788/HPLPB20122411.2746. (in Chinese)

    Article  Google Scholar 

  30. HUANG Wei, LI Shi-bin, LIU Jun, WANG Zhen-guo. Investigation on high angle of attack characteristics of hypersonic space vehicle [J]. Science China (Technological Sciences), 2012. DOI: https://doi.org/10.1007/s11431-012-4760-6.

  31. MENTER F. Zonal two equation k-w turbulence models for aerodynamic flows [C]//24th Fluid Dynamics Conference. 1993: 2906. DOI: https://doi.org/10.2514/6.1993-2906.

  32. YU G, LI J G, CHANG X Y, CHEN L H, SUNG C J. Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors [J]. Journal of Propulsion & Power, 2001, 17(6): 1263–1272. DOI: https://doi.org/10.2514/2.5874.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Investigation, numerical simulation, data analysis, and paper writing were carried out by ZHANG Zhe; XI Wen-xiong conceived and supervised the study and edited the manuscript; JIN Xing proofread and confirmed the results.

Corresponding author

Correspondence to Wen-xiong Xi  (席文雄).

Additional information

Conflict of interest

ZHANG Zhe, JIN Xing and XI Wen-xiong declare that they have no conflict of interest.

Foundation item

Project(51606220) supported by the National Natural Science Foundation of China; Project(1194028) supported by the Beijing Natural Science Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Jin, X. & Xi, Wx. Combustion characteristics of supersonic strut-cavity combustor under plasma jet-assisted combustion. J. Cent. South Univ. 28, 311–324 (2021). https://doi.org/10.1007/s11771-021-4604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4604-2

Key words

关键词

Navigation