Skip to main content
Log in

Kinetic model research on drying characteristics of artificial magnetite green pellet

人工磁铁精矿生球干燥的动力学模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, the effects of drying temperature, hot airflow speed and diameter of green pellet on drying rate of artificial magnetite pellet were deeply investigated to clarify the drying characteristics of artificial magnetite green pellet. The results show that the drying process of artificial magnetite green pellet has three stages, accelerated drying stage, constant drying stage and decelerated drying stage. And drying temperature and hot airflow speed both have significant reciprocal effects on moisture ratio and drying rate of green pellet during the drying process. However, the diameter of green pellet has little effect on drying process of green pellet. Then the drying fitting models of Correction Henderson and Pabis, Lewis, Correction Page (III), Wang and Singh are used to describe the drying kinetics of artificial magnetite green pellet. The fitting results indicate that the drying process of artificial magnetite pellet can be described by Correction Page (III) model accurately. Finally, the contrast experiments demonstrate that the fitting model can well describe the actual drying process.

摘要

本文研究了干燥温度、热风流速以及生球直径对人工磁铁精矿生球干燥速度的影响, 明确了人 工磁铁精矿生球的干燥特性。结果表明, 生球的干燥过程存在三个阶段, 即加速干燥段、恒定干燥段 和减速干燥段。在干燥过程中, 干燥温度和热风流速对生球含水率和干燥速率变化有显著影响, 而生 球直径对生球干燥过程影响不大。随后, 采用修正Henderson、Pabis、Lewis、修正Page(III)、Wang 和Singh 的干燥拟合模型来描述人工磁铁矿生球的干燥动力学。模型拟合结果表明, 人工磁铁精矿生 球的干燥过程符合Page(III)模型。最后, 将实际实验数据与模型拟合数据进行对比, 结果表明该拟合 模型方程可以较好地描述实际生球干燥过程。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHOU You-lian, KAWATRA S K. Pelletization using humic substance-based binder [J]. Mineral Processing and Extractive Metallurgy Review, 2017, 38(2): 83–91. DOI: https://doi.org/10.1080/08827508.2016.1262859.

    Article  Google Scholar 

  2. PAL J, GHORAI S, NANDI B, CHAKRABORTY T, DAS G, VENUGOPALAN T. Effect of pyroxenite and olivine minerals as source of MgO in hematite pellet on improvement of metallurgical properties [J]. Journal of Central South University, 2015, 22(9): 3302–3310. DOI: https://doi.org/10.1007/s11771-015-2870-6.

    Article  Google Scholar 

  3. COPELAND C R, CLAREMBOUX V, KAWATRA S K. A comparison of pellet quality from straight-grate and grate-kiln furnaces [J]. Mineral Processing and Extractive Metallurgy Review, 2018, 40(3): 218–223. DOI: https://doi.org/10.1080/08827508.2018.1536050.

    Article  Google Scholar 

  4. LONG Hong-ming, WANG Hong-tao, DI Zhan-xia, CHUN Tie-jun, LIU Zheng-gen. Influences of hydrogen-enriched atmosphere under coke oven gas injection on reduction swelling behaviors of oxidized pellet [J]. Journal of Central South University, 2016, 23(8): 1890–1898. DOI: https://doi.org/10.1007/s11771-016-3244-4.

    Article  Google Scholar 

  5. de MORAES S L, RIBEIRO T R. Brazilian iron ore and production of pellet [J]. Mineral Processing and Extractive Metallurgy Review, 2019, 40(1): 16–23. DOI: https://doi.org/10.1080/08827508.2018.1481056.

    Article  Google Scholar 

  6. ZHANG Han-quan, LU Man-man, FU Jin-tao. Oxidation and roasting characteristics of artificial magnetite pellet [J]. Journal of Central South University, 2016, 23(11): 2999–3005. DOI: https://doi.org/10.1007/s11771-016-3363-y.

    Article  Google Scholar 

  7. LUO Li-qun, HUANG Hong, YU Yong-fu. Characterization and technology of fast reducing roasting for fine iron materials [J]. Journal of Central South University, 2012, 19(8): 2272–2278. DOI: https://doi.org/10.1007/s11771-012-1271-3.

    Article  Google Scholar 

  8. ZHANG Yuan-bo, DU Ming-hui, LIU Bing-bing, SU Zi-jian, LI Guang-hui, JIANG Tao. Separation and recovery of iron and manganese from high-iron manganese oxide ores by reduction roasting and magnetic separation technique [J]. Separation Science and Technology, 2017, 52(7): 1321–1332. DOI: https://doi.org/10.1080/01496395.2017.1284864.

    Article  Google Scholar 

  9. JANG K O, NUNNA R M, HAPUGODA S, NGUYEN A V, BRUCKARD W J. Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation [J]. Minerals Engineering, 2014, 60: 14–22. DOI: https://doi.org/10.1016/j.mineng.2014.01.021.

    Article  Google Scholar 

  10. GUO Hong-wei, BAI Jun-li, ZHANG Jian-liang, LI Hong-ge. Mechanism of strength improvement of magnetite pellet by adding boron-bearing iron concentrate [J]. Journal of Iron and Steel Research, International, 2014, 21: 9–15. DOI: https://doi.org/10.1016/S1006-706X(14)60002-9.

    Article  Google Scholar 

  11. LUO Li-qun, ZHANG Han-quan. Process mineralogy and characteristic associations of iron and phosphorous-based minerals on oolitic hematite [J]. Journal of Central South University, 2017, 24(9): 1959–1967. DOI: https://doi.org/10.1007/s11771-017-3604-8.

    Article  Google Scholar 

  12. YANG Cong-cong, ZHU De-qing, PAN jian, ZHOU Bin-zhi, XUN Hu. Oxidation and induration characteristics of pellet made from western Australian ultrafine magnetite concentrates and its utilization strategy [J]. Journal of Iron and Steel Research, International, 2016, 23: 924–932. DOI: https://doi.org/10.1016/S1006-706X(16)30140-6.

    Article  Google Scholar 

  13. HALT J A, KAWATRA S K. Iron ore pellet dustiness part II: Effects of firing route and abrasion resistance on fines and dust generation [J]. Mineral Processing and Extractive Metallurgy Review, 2015, 36(5): 340–347. DOI: https://doi.org/10.1080/08827508.2014.978317.

    Article  Google Scholar 

  14. RAJSHEKAR Y, PAL J, VENUGOPALAN T. Mill scale as a potential additive to improve the quality of hematite ore pellet [J]. Mineral Processing and Extractive Metallurgy Review, 2018, 39(3): 202–210. DOI: https://doi.org/10.1080/08827508.2017.1415205.

    Article  Google Scholar 

  15. FAN Xiao-hui, YANG Gui-ming, CHEN Xu-ling, HE Xiang-ning, HUANG Xiao-xian, GUO Lu. Effect of carboxymethyl cellulose on the drying dynamics and thermal cracking performance of iron ore green pellets [J]. Powder Technology, 2014, 267: 11–17. DOI: https://doi.org/10.1016/j.powtec.2014.07.011.

    Article  Google Scholar 

  16. ZHANG Yuan-bo, LU Man-man, ZHOU You-lian, SU Zi-jian, LIU Bing-bing, LI Guang-hui, JIANG Tao. Interfacial interaction between humic acid and vanadium, titanium-bearing magnetite (VTM) particles [J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41(2): 75–84. DOI: https://doi.org/10.1080/08827508.2018.1538986.

    Article  Google Scholar 

  17. RAMACHANDRAN R P, BOURASSA J, PALIWAL J, CENKOWSKI S. Effect of temperature and velocity of superheated steam on initial condensation of distillers’ spent grain pellets during drying [J]. Drying Technology, 2017, 35(2): 182–192. DOI: https://doi.org/10.1080/07373937.2016.1166123.

    Article  Google Scholar 

  18. ATHAYDE M, COTA M, COVCEVICH M. Iron ore pellet drying assisted by microwave: A kinetic evaluation [J]. Mineral Processing and Extractive Metallurgy Review, 2018, 39(4): 266–275. DOI: https://doi.org/10.1080/08827508.2017.1423295.

    Article  Google Scholar 

  19. LJUNG A L, LUNDSTRÖM T S, MARJAVAARA B D, TANO K. Influence of air humidity on drying of individual iron ore pellets [J]. Drying Technology, 2011, 29(9): 1101–1111. DOI: https://doi.org/10.1080/07373937.2011.571355.

    Article  Google Scholar 

  20. LJUNG A L, FRISHFELDS V, LUNDSTRÖM T S, MARJAVAARA B D. Discrete and continuous modeling of heat and mass transport in drying of a bed of iron ore pellets [J]. Drying Technology, 2012, 30(7): 760–773. DOI: https://doi.org/10.1080/07373937.2012.662567.

    Article  Google Scholar 

  21. ERGÜN K, CALISKAN G, DIRIM S N. Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices [J]. Heat and Mass Transfer, 2016, 52(12): 2697–2705. DOI: https://doi.org/10.1007/s00231-016-1773-x.

    Article  Google Scholar 

  22. LEWIS W K. The rate of drying of solid materials [J]. The Journal of Industrial and Engineering Chemistry, 1921, 5: 427–432. https://pubs.acs.org/doi/pdf/10.1021/ie50137a021?casa_oken=BQq4thzr7o8AAAAA:0k1QfVlo_xP5t1J0um2xPk7zItY-wc3C-5pjfYPkRFaD4lEZ754Wqn7alV4ATJOfc1Xuerezxql1it-6.

    Article  Google Scholar 

  23. DANISH M, JING H, PIN Z, ZIYANG L, PANSHENG Q. A new drying kinetic model for sewage sludge drying in presence of CaO and NaClO [J]. Applied Thermal Engineering, 2016, 106: 141–152. DOI: https://doi.org/10.1016/j.applthermaleng.2016.05.191.

    Article  Google Scholar 

  24. BABALIS S J, PAPANICOLAOU E, KYRIAKIS N, BELESSIOTIS V G. Evaluation of thin-layer drying models for describing drying kinetics of FIGS (Ficus carica) [J]. Journal of Food Engineering, 2006, 75(2): 205–214. DOI: https://doi.org/10.1016/j.jfoodeng.2005.04.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHANG Han-quan, LIU Cheng-xin, and LU Man-man. ZHANG Han-quan contributed to the conception of the study. LIU Cheng-xin and LU Man-man designed and performed the experiments. LIU Cheng-xin and YU Hong performed the data analysis and wrote the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Man-man Lu  (路漫漫).

Additional information

Conflict of interest

ZHANG Han-quan, LIU Cheng-xin, LU Man-man and YU Hong declare that they have no conflict of interest.

Foundation item

Projects(51974204, 51474161) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hq., Liu, Cx., Lu, Mm. et al. Kinetic model research on drying characteristics of artificial magnetite green pellet. J. Cent. South Univ. 28, 89–99 (2021). https://doi.org/10.1007/s11771-021-4588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4588-y

Key words

关键词

Navigation