Skip to main content
Log in

Feature, genetic model and distribution of calcareous insulating layers in marine strata of western Pearl River Mouth basin in north of South China Sea

中国南海北部珠江口盆地西部海相地层钙质隔层特征、成因及分布

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

We have systematically investigated the feature, genetic model and distribution of calcareous insulating layers in marine strata of the I oil group in member 2 of Zhujiang formation (ZJ2I oil formation), western Pearl River Mouth basin (PRMB) in the north of the South China Sea by using data such as cores, thin sections, X-ray diffraction of whole-rock, and calcite cement carbon and oxygen isotopes. The lithology of the calcareous insulating layers in the study area is mainly composed of the terrigenous clastic bioclastic limestone and a small amount of fine-grained calcareous sandstone. On this basis, two genetic models of calcareous insulating layers are established, including the evaporation seawater genetic model and shallow burial meteoric water genetic model. The calcareous insulating layers of the evaporation seawater genetic model developed in the foreshore subfacies, mainly at the top of the 1–1 strata and 1–3 strata. The calcareous insulating layers of the shallow burial meteoric water genetic model developed in the backshore subfacies, primarily in the 1–2 strata.

摘要

综合利用岩心、普通薄片、全岩和黏土矿物X 射线衍射、碳氧同位素等资料, 对珠江口盆地西 部珠江组二段I 油组海相砂岩地层钙质隔层的岩性和矿物结构特征、成因模式及其分布规律进行系统 研究。研究区钙质隔层岩性主要为含陆源碎屑生屑灰岩和少量细粒钙质石英砂岩。在此基础上建立了 两种钙质隔层的成因模式: 蒸发作用海水成因和浅埋藏淡水成因。蒸发作用海水成因的钙质隔层在前 滨亚相发育, 主要发育在1–1 岩层组和1–3 岩层组顶部。浅埋藏淡水成因的钙质隔层在后滨亚相发育, 主要发育在1–2 岩层组。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG Ji, ZHANG Lie-hui, HU Shu-yong, NAN Li-ya. The genesis and characteristics and identification of intercalations in non-marine reservoir with clastic rock [J]. WLT, 2003, 27(3): 221–224. DOI: https://doi.org/10.16489/j.issn.1004-1338.2003.03.013. (in Chinese)

    Google Scholar 

  2. LIU Chun-lin, WANG Hong-xing, SHANG Yu-qiu. Limit of barrier-layer petrophysical property in late of high water cut stage in Daqing Oilfield—the examples from Lamadianzi, Saertu and Xingshugang oilfilds [J]. Xinjiang Petroleum Geology, 1995, 16(2): 149–152. (in Chinese)

    Google Scholar 

  3. WANG Chao, YANG Hong-nan, LE Ping, JIA Bing-yi, SU Bo. Ring of interbeds and the influence on distribution of remaining oil–Taking command of the Hudson Donghe sandstone oilfield [J]. Xingjiang Oil & Gas (Edition of Natural Science), 2019, 15(4): 15–20. DOI: CNKI:SUN:XJSY.0.2019-04-004. (in Chinese)

    Google Scholar 

  4. LI Hong-ying, CHEN Shan-bin, YANG Zhi-cheng, WANG Xin-ran, LIU Bin. Characteristics of interbeds in thick oil layer and its effect on remaining oil distribution: A case study of L Oilfield, Bohai Bay Basin [J]. Fault-Block Oil & Gas Field, 2018, 25(6): 709–714. DOI: https://doi.org/10.6056/dkyqt201806005. (in Chinese)

    Google Scholar 

  5. SHU Qing-lin. Interlayer characterization of fluvial reservoir in Guantao Formation of Gudao Oilfield [J]. Acta Petrolei Sinica, 2006, 27(3): 100–103. DOI: https://doi.org/10.3321/j.issn:0253-2697.2006.03.022. (in Chinese)

    Google Scholar 

  6. ZHANG Chang-min, YIN Tai-ju, ZHANG Shang-feng, LI Shao-hua, WANG Da-hai, LIU Jun. Hierarchy analysis of mudstone barriers in Shuanghe Oilfield [J]. Acta Petrolei Sinica, 2004, 25(3): 48–52, DOI: https://doi.org/10.3321/j.issn:0253-2697.2004.03.009. (in Chinese)

    Google Scholar 

  7. MA Shi-zhong, SUN Yu, FAN Guang-juan, HAO Lan-ying. The method of studying thin interbed architecture of burial meandering channel sandbody [J]. Acta Sedmentologica Sinica, 2008, 26(4): 632–639. DOI: https://doi.org/10.14027/j.cnki.cjxb.2008.04.013. (in Chinese)

    Google Scholar 

  8. XIE Jun, ZHANG Jin-liang, LIANG Hui-zhen, WANG Jing-kai. Genesis and distribution characteristics of interbeds in the terminal fan of pucheng oilfield [J]. Petriodical of Ocean University of China, 2008, 38(4): 653–656. DOI: https://doi.org/10.16441/j.cnki.hdxb.2008.04.026. (in Chinese)

    Google Scholar 

  9. HUANG Wei, WANG Pin-xian. The amount and distribution of south china sea sediments since oligocene [J]. Science in China Ser D: Earth Sciences, 2006, 36(9): 822–829. DOI: https://doi.org/10.1360/072005-588. (in Chinese)

    Google Scholar 

  10. ZHANG Ying-zhao, CHEN Zhi-hong, LI Xu-shen, XU Xin-de, LI Qi. Petroleum accumulation characteristics and favorable exploration direction in Wenchang B Sag and its surrounding areas, Pearl River Mouth Basin [J]. Petroleum Geology & Experiment, 2011, 33(3): 297–302. DOI: https://doi.org/10.3969/j.issn.1001-6112.2011.03.015. (in Chinese)

    Google Scholar 

  11. JIANG Hua, WANG Hua, LI Jun-liang, CHEN Shao-ping, LIN Zheng-liang, FANG Xin-xin, CAI Jia. Research on hydrocarbon pooling and distribution patterns in the Zhu-3 depression, the Pearl River Mouth basin [J]. Oil & Gas Geology, 2009, 30(3): 275–286. DOI: https://doi.org/10.3321/j.issn:0253-9985.2009.03.004. (in Chinese)

    Google Scholar 

  12. LEI Xiao, HU Yu, LIANG Wen-feng, LIAO Ji-jia, LIAO Ming-guang. A study on sedimentary Facies of Oil Group 1 in Member 2 of Zhujiang formation in Wenchang 19-1 Oilfield [J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2015, 37(4): 1–12. DOI: https://doi.org/10.11885/j.issn.1674-5086.2015.01.17.02. (in Chinese)

    Google Scholar 

  13. CHEN Rong-kun. Application of stable oxygen and carbon isotopes in the study of diagenetic environment of carbonate rocks [J]. Acta Sedimentologica Sinca, 1994, 12(4): 11–21. DOI: https://doi.org/10.14027/j.cnki.cjxb.1994.04.002. (in Chinese)

    Google Scholar 

  14. O’NEIL J R, CLAYTON R N, MAYEDA T K. Oxygen isotope fractionation in divalent metal carbonate [J]. Journal of Chemical Physics, 1969, 51(12): 5547–5558. DOI: https://doi.org/10.1063/1.1671982.

    Article  Google Scholar 

  15. FRIEDMAN I, O’NEIL J R. Compilation of stable isotope fractionation factors of geochemical interest [M]. Houston: US Geology Survey, 1977: 440.

  16. MACAULAY C I, HASZEINE R S, FALLICK A E. Distribution chemistry isotopic composition and origin of diagenetic carbonates: Magnus sandstone, North sea [J]. J Sediment Pet, 1993, 63: 33–43. DOI: https://doi.org/10.1306/D4267A82-2B26-11D7-8648000102C1865D.

    Google Scholar 

  17. MOSTAFA F, HARRISON T M, GROVE M. In situ stable isotopic evidence for protracted and complex carbonate cementation in a petroleum reservoir, north Coles Levee, San Joaquin basin, California, USA [J]. J Sediment Res, 2001, 71(3): 444–458. DOI: https://doi.org/10.1306/2DC40954-0E47-11D7-8643000102C1865D.

    Article  Google Scholar 

  18. LIU Hao-nian, HUANG Si-jing, DENG Li-li, WU Meng. Precipitation interaction of authigenic clay minerals for clastic reservoirs and its effect on reservoirs: A case study of sandstones of Xujiahe formation of upper triassic from western sichuan depression [J]. Geology and Mineral Resources of South China, 2008(4): 1–7. DOI: https://doi.org/10.3969/j.issn.1007-3701.2008.04.001. (in Chinese)

  19. WANG Qi, HAO Le-wei, CHEN Guo-jun, ZHANG Gong-cheng, MA Xiao-feng, WANG Huan. Forming mechanism of carbonate cements in siliciclastic sandstone of Zhuhai Formation in Baiyun Sag [J]. Acta Petrolei Sinica, 2010, 31(4): 553–565. DOI: https://doi.org/10.1016/S1876-3804(11)60008-6. (in Chinese)

    Google Scholar 

  20. VEIZER J, HOEFS J. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks [J]. Geochimica et Cosmochimica Acta, 1976, 40(11): 1387–1395. DOI: https://doi.org/10.1016/0016-7037(76)90129-0.

    Article  Google Scholar 

  21. KELTS K, TALBOT M R. Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions [M] Madison: Wis Science Tech, 1990: 290–317.

    Google Scholar 

  22. NIU Jun, HUANG Wen-hui, FEI Liang. Paleoenvironment in an Ordovician carbonate reservoir in southwestern of Tarim Basin, NW China: Evidence from stable isotopes [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(16): 2007–2016. DOI: https://doi.org/10.1080/15567036.2018.1549129. (in Chinese)

    Article  Google Scholar 

  23. LI Kai-yue, TANG Hao-shu, CHEN Yan-jing, XUE Li-zhi, WANG Pin, SUN Zhi-fu. Carbon and oxygen isotope geochemistry of marbles in the Jingshan Group, Jiaobei Terrane and its indication to the Lomagundi-Jatuli Event [J]. Acta Petrologica Sinica, 2020, 36(4): 1059–1075. DOI: https://doi.org/10.18654/1000-0569/2020.04.06. (in Chinese)

    Article  Google Scholar 

  24. FUJIYA W, AOKI Y, USHIKUBO T, HASHIZUME K, YAMAGUCHHI A. Carbon istopic evolution of aqueous fluids in CM chondrites: Clues from in-situ isotope analyses within calcite grains in Yamato-791198 [J]. Geochimica et Cosmochimica Acta., 2020, 274: 246–260. DOI: https://doi.org/10.1016/j.gca.2020.02.003.

    Article  Google Scholar 

  25. KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils [J]. Geochimica et Cosmochimica Acta, 1964, 28(10, 11): 1786–1816. DOI: https://doi.org/10.1016/0016-7037(64)90022-5.

    Google Scholar 

  26. ABREU V, SULLIVAN M, PIRMEZ C. Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels [J]. Marine and Pettroleum Geology, 2003, 20(6–8): 631–648. DOI: https://doi.org/10.1016/j.marpetgeo.2003.08.003.

    Article  Google Scholar 

  27. NICHOLS G. Sedimentology and stratigraphy [M]. 2nd ed. London: Wiley-Blackwell, 1999. DOI: https://doi.org/10.1007/0-306-47162-03.

    Google Scholar 

  28. HUBBARD S M, SMITH D G, NIELSEN H. Seismic geomorphology and sedimentology of a tidally influenced river deposit, Lower Cretaceous Athabasca oil sands, Alberta, Canada [J]. AAPG Bull, 2011, 95: 1123–1145. DOI: https://doi.org/10.1306/12131010111.

    Article  Google Scholar 

  29. HU Yu. Study on the genetic models of calcareous intercalations in Marine Stratum-the Oil Group 1 in Member 2 of Zhujiang formation in Wenchang a oilfield [D]. Chengdu: Southwest Petroleum University, 2014. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHANG Ting-shan and LIAO Ming-guang provided the concept. HU Yu conducted the literature review and wrote the first draft of the manuscript. ZHU Hai-hua provided the X-ray diffraction of whole-rock and calcite cement carbon and oxygen isotopes data. HU Yu analyzed the measured data, and finally completed the manuscript preparation and modification.

Corresponding author

Correspondence to Yu Hu  (胡余).

Additional information

Conflict of interest

HU Yu, ZHANG Ting-shan, LIAO Ming-guang and ZHU Hai-hua declare that they have no conflict of interest.

Foundation item

Project(51534006) supported by the Key Program of National Natural Science Foundation of China; Project(2014CB239005) supported by the National Key Basic Research and Development, China; Projects(41772150, 51674211) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhang, Ts., Liao, Mg. et al. Feature, genetic model and distribution of calcareous insulating layers in marine strata of western Pearl River Mouth basin in north of South China Sea. J. Cent. South Univ. 27, 3375–3387 (2020). https://doi.org/10.1007/s11771-020-4553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4553-1

Key words

关键词

Navigation