Skip to main content
Log in

Thermal elastohydrodynamic lubrication of modified gear system considering vibration

考虑振动的变位齿轮系统热弹流润滑

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated, including the influence of the modification coefficient and vibrations. Based on the dynamic theory of gear systems, a six-degree-of-freedom tribo-dynamics model was established. Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed. The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types. A thick lubricating oil film could be formed, and the friction coefficient between the teeth and the oil film flash temperature was the smallest. As the modification coefficient increased, the lubrication condition was continuously improved, and the scuffing load capacity was enhanced. The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.

摘要

为了探究动载荷作用下变位齿轮系统的热弹流润滑特性, 综合考虑齿轮变位和振动的影响, 基 于动力学理论, 建立了齿轮的六自由度摩擦动力学模型, 分析振动与静载荷作用下变位齿轮系统的热 弹流润滑特性。研究表明, 与其他传动类型相比, 正传动齿轮系统的润滑效果最佳, 轮齿间可以形成 较厚的润滑油膜, 轮齿间的摩擦因数、油膜的最高温升最小, 并且, 随着两齿轮变位系数和的增大, 润滑状况不断得到改善, 热胶合承载能力增强; 变位系数增加使齿轮系统的刚度增大, 但同时也降低 了油膜的刚度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Jian-jun, LI Qi-han, LI Run-fang. Research advances for nonlinear vibration of gear transmission systems [J]. Advances in Mechanics, 2005, 35(1): 37–51. (in Chinese)

    MathSciNet  Google Scholar 

  2. SEIREG A, HOUSER D. Evaluation of dynamic factors for spur and helical gears [J]. ASME J Eng Ind, 1970, 1: 504–515. DOI: https://doi.org/10.1115/1.3427790.

    Article  Google Scholar 

  3. SAKARIDIS E, SPITAS V, SPITAS C. Non-linear modeling of gear drive dynamics incorporating intermittent tooth contact analysis and tooth eigenvibrations [J]. Mechanism and Machine Theory, 2019, 136: 307–333. DOI: https://doi.org/10.1016/j.mechmachtheory.2019.03.012.

    Article  Google Scholar 

  4. YAO Wen-xi. Meshing impact response of involute spur gears [J]. Vibration, Testing and Diagnosis, 1992, 12(2): 27–30. DOI: https://doi.org/10.16450/j.cnki.issn.1004-6801.1992.02.006. (in Chinese)

    Google Scholar 

  5. HUA Dong-yun, ZHANG He-hao, XU Dong. A research on dynamics of rotator-gearing system [J]. Journal of Shanghai University of Technology, 1990, 11(2): 124–134. (in Chinese)

    Google Scholar 

  6. ZHAO Jing-jing, WANG You-qiang, ZHANG Ping, JIAN Guang-xiao. A Newtonian thermal elastohydrodynamic lubrication model for ferrofluid-lubricated involute spur gear pair [J]. Lubrication Science, 2020, 32(2): 33–45. DOI: https://doi.org/10.1002/ls.1483.

    Article  Google Scholar 

  7. WANG Wen-zhong, CAO Hong. Numerical simulation of unsteady EHL lubrication of involute helical gears [J]. Tribology, 2011, 31(6): 604–609. DOI: https://doi.org/10.16078/j.tribology.2011.06.015. (in Chinese)

    Google Scholar 

  8. DAI Ling, PU Wei, WANG Jia-xu. Mixed EHL analysis of planetary drives with small teeth number difference considering real tooth geometry [J]. Lubrication Science, 2018, 30(6): 317–330. DOI: https://doi.org/10.1002/ls.1423.

    Article  Google Scholar 

  9. LIU Huai-ju, ZHU Cai-chao, SUN Zhang-dong, SONG Chao-sheng. Starved lubrication of a spur gear pair [J]. Tribology International, 2016, 94: 52–60. DOI: https://doi.org/10.1016/j.triboint.2015.07.030.

    Article  Google Scholar 

  10. GLOVNEA R, ZHANG Xing-nan. Elastohydrodynamic films under periodic load variation: An experimental and theoretical approach [J]. Tribology Letters, 2018, 66(3): 1–11. DOI: https://doi.org/10.1007/s11249-018-1067-1.

    Article  Google Scholar 

  11. LU Li-xin, ZHANG He-hao. Nonsteady elastohydrodynamic lubrication of Gear Transmission system under dynamic load [J]. Lubrication Engineering, 2002, 27(1): 12–14. (in Chinese)

    Google Scholar 

  12. LIU Huai-ju, MAO Ken, ZHU Cai-chao, CHEN Si-yu, XU Xiang-yang, LIU Ming-yong. Spur gear lubrication analysis with dynamic loads [J]. Tribology Transactions, 2013, 56(1): 41–48. DOI: https://doi.org/10.1080/10402004.2012.725805.

    Article  Google Scholar 

  13. WANG K L, CHENG H S. A numerical solution to the dynamic load, film thickness, and surface temperatures in spur gears, part I: Analysis [J]. Journal of Mechanical Design, 1981, 103(1): 177–187. DOI: https://doi.org/10.1115/1.3254859.

    Article  Google Scholar 

  14. WANG K L, CHENG H S. A numerical solution to the dynamic load, film thickness, and surface temperatures in spur gears, Part II: Results [J]. Transactions of the ASME, 1981, 103(1): 188–194. DOI: https://doi.org/10.1115/1.3254860.

    Google Scholar 

  15. SHI Gao-wei, WANG You-qiang. Influence of variable coiling and suction speed process on hot mixed lubrication of spur gear [J]. Lubrication Engineering, 2011, 36(1): 43–48. DOI: https://doi.org/10.3969/j.issn.0254-0150.2011.01.012. (in Chinese)

    Google Scholar 

  16. YANG Yu-liang. Research on thermo-elastic coupling and vibration damping with modification of helical gear system [D]. Dalian, Dalian University of Technology, 2016. (in Chinese)

    Google Scholar 

  17. ZHANG Zhao-qiang. Study on elastohydrodynamic lubrication and dynamics contact of double involute gear [D]. Qingdao: Qingdao University of Science & Technology, 2014. (in Chinese)

    Google Scholar 

  18. WANG You-qiang, CHANG Tong. The influence of approach impact load on elasto-hydrodynamic lubrication of involute spur gears [J]. Chinese Journal of Computational Mechanics, 2010, 27(3): 527–532. (in Chinese)

    MathSciNet  Google Scholar 

  19. ZHAO Jing-jing, WANG You-qiang. Non-steady-state EHL analysis of impact load in involute spur gear under different carrier fluid ferrofluid [J]. Machine Tool & Hydraulics, 2019, 47(22): 20–23, 40. DOI: https://doi.org/10.3969/j.issn.1001-3881.2019.22.004. (in Chinese)

    Google Scholar 

  20. WANG You-qiang, HE Zhi-cheng, SU Wei. Effect of impact load on transient elastohydrodynamic lubrication of involute spur gears [J]. Tribology Transactions, 2012, 55(2): 155–162. DOI: https://doi.org/10.1080/10402004.2011.639048.

    Article  Google Scholar 

  21. de la CRUZ M, CHONG WWF, TEODORESCU M, THEODOSSIADES S, RAHNEJAT H. Transient mixed thermo-elastohydrodynamic lubrication in multi-speed transmissions [J]. Tribology International, 2012, 49: 17–29. DOI: https://doi.org/10.1016/j.triboint.2011.12.006.

    Article  Google Scholar 

  22. XUE Jian-hua, LI Wei, QIN Cai-yan. The scuffing load capacity of involute spur gear systems based on dynamic loads and transient thermal elastohydrodynamic lubrication [J]. Journal of Central South University (Science and Technology), 2014, 42: 32–44. (in Chinese)

    Google Scholar 

  23. JIAN Guang-xiao, WANG You-qiang, ZHANG Ping, XIE Yi-nong. Analysis of lubricating performance for involute spur gear under vibration [J]. Lubrication Science, 2020, 32(7): 344–357. DOI: https://doi.org/10.1002/ls.1507.

    Article  Google Scholar 

  24. LI S, KAHRAMAN A. A spur gear mesh interface damping model based on elastohydrodynamic contact behaviour [J]. International Journal of Powertrains, 2011, 1(1): 4–21. DOI: https://doi.org/10.1504/ijpt.2011.041907.

    Article  Google Scholar 

  25. LI S, KAHRAMAN A. A tribo-dynamic model of a spur gear pair [J]. Journal of Sound and Vibration, 2013, 332(20): 4963–4978. DOI: https://doi.org/10.1016/j.jsv.2013.04.022.

    Article  Google Scholar 

  26. BARBIERI M, LUBRECHT A A, PELLICANO F. Behavior of lubricant fluid film in gears under dynamic conditions [J]. Tribology International, 2013, 62: 37–48. DOI: https://doi.org/10.1016/j.triboint.2013.01.017.

    Article  Google Scholar 

  27. MA Ru-kang. A study of quasi-static and dynamic behavior of double helical gears [M]. Ohio: The Ohio State University, 2014.

    Google Scholar 

  28. HUANG Xing-bao, YANG Bin-tang, WANG You-qiang. A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling [J]. Applied Mathematical Modelling, 2019, 72: 623–649. DOI: https://doi.org/10.1016/j.apm.2019.03.008.

    Article  MathSciNet  MATH  Google Scholar 

  29. ZHANG Yuan-yuan, LIU Huai-ju, ZHU Cai-chao, LIU Ming-yong, SONG Chao-sheng. Oil film stiffness and damping in an elastohydrodynamic lubrication line contact-vibration [J]. Journal of Mechanical Science and Technology, 2016, 30(7): 3031–3039. DOI: https://doi.org/10.1007/s12206-016-0611-x.

    Article  Google Scholar 

  30. ZHOU Chang-jiang, XIAO Ze-liang, CHEN Si-yu, HAN Xu. Normal and tangential oil film stiffness of modified spur gear with non-Newtonian elastohydrodynamic lubrication [J]. Tribology International, 2017, 109: 319–327. DOI: https://doi.org/10.1016/j.triboint.2016.12.045.

    Article  Google Scholar 

  31. LEI Chun-li, LI Fu-hong, GUO Jun-feng, YANG Xiao-yan. Analysis on the oil film stiffness of rolling bearings based on multi parameter coupling [J]. Journal of Vibration and Shock, 2018, 37(10): 225–232. DOI: https://doi.org/10.13465/j.cnki.jvs.2018.10.032. (in Chinese)

    Google Scholar 

  32. ZOU Yu-jing, CHANG De-gong. Coupling analysis of dynamics and EHL for spur gears [J]. Journal of Aerospace Power, 2016, 31(4): 2010–2020. DOI: https://doi.org/10.13224/j.cnki.jasp.2016.08.028. (in Chinese)

    Google Scholar 

  33. ZOU Yu-jing. Coupling research on dynamical behavior and elastohydrodynamic lubrication property of helical gear [J]. Journal of Mechanical Engineering, 2019, 55(3): 109–117. DOI: https://doi.org/10.3901/jme.2019.03.109. (in Chinese)

    Article  Google Scholar 

  34. LIU Fu-hao, JIANG Han-jun, ZHANG Liang, CHEN Li. Analysis of vibration characteristic for helical gear under hydrodynamic conditions [J]. Advances in Mechanical Engineering, 2017, 9(1): 168781401668796. DOI: https://doi.org/10.1177/1687814016687962.

    Article  Google Scholar 

  35. LIU Fu-hao, JIANG Han-jun, LIU Shao-na, YU Xue-hua. Dynamic behavior analysis of spur gears with constant & variable excitations considering sliding friction influence [J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5363–5370. DOI: https://doi.org/10.1007/s12206-016-1103-8.

    Article  Google Scholar 

  36. YUAN Shi-hua, DONG Hui-li, LI Xue-yuan. Analysis of lubricating performance for involute gear based on dynamic loading theory [J]. Journal of Mechanical Design, 2012, 134(12): 1–9. DOI: https://doi.org/10.1115/1.4007842.

    Article  Google Scholar 

  37. DONG Hui-li, YUAN Shi-hua, HU Ji-bin, LI Xue-yuan. Analysis of lubricating performance for involute gear considering tribo-dynamic behavior [J]. 2013, 33(5): 436–442. DOI: https://doi.org/10.16078/j.tribology.2013.05.012. (in Chinese)

    Google Scholar 

  38. YUAN Shi-hua. Dynamic loading analysis of involute gears considering lubrication performance [J]. Journal of Mechanical Engineering, 2012, 48(19): 10–16. DOI: https://doi.org/10.3901/jme.2012.19.010. (in Chinese)

    Article  Google Scholar 

  39. LI Run-fang, WANG Jian-jun. Gear system dynamics [M]. Beijing: Science press, 1997. (in Chinese)

    Google Scholar 

  40. TANG Jin-yuan, CAI Wei-xing, WANG Zhi-wei. Meshing stiffness formula of modification gear [J]. Journal of Central South University (Science and Technology), 2017, 48(2): 337–342. DOI: https://doi.org/10.11817/j.issn.1672-7207.2017.02.010. (in Chinese)

    Google Scholar 

  41. WANG You-qiang, YANG Pei-ran. Analysis of Transient Micro-Thermoelastic Flow of Involute Spur Gears [J]. Journal of Mechanical Engineering, 2007, 43(11): 142–148. (in Chinese)

    Article  Google Scholar 

  42. YANG Pei-ran. Numerical analysis of fluid lubrication [M]. Beijing: National Defense Industry Press, 1998. (in Chinese)

    Google Scholar 

  43. LUO Biao. Investigation of thermo-elastic coupling dynamics and multi-objective comprehensive tooth profile modification of gear transmission system [D]. Beijing: University of Science and Technology Beijing, 2019. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by JIAN Guang-xiao and WANG You-qiang. JIAN Guang-xiao and WANG You-qiang put forward the research ideas. JIAN Guang-xiao, WANG You-qiang, ZHANG Ping, LI Yun-kai and LUO Heng established the models. JIAN Guang-xiao debugged the program, got the research data and accomplished the relevant analysis. The initial draft of the manuscript was written by JIAN Guang-xiao. All authors replied to reviewer’ comments and revised the final version.

Corresponding author

Correspondence to You-qiang Wang  (王优强).

Additional information

Conflict of interest

JIAN Guang-xiao, WANG You-qiang, ZHANG Ping, LI Yun-kai and LUO Heng declare that they have no conflict of interest.

Foundation item

Projects(51575289, 51705270) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, Gx., Wang, Yq., Zhang, P. et al. Thermal elastohydrodynamic lubrication of modified gear system considering vibration. J. Cent. South Univ. 27, 3350–3363 (2020). https://doi.org/10.1007/s11771-020-4551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4551-3

Key words

关键词

Navigation