Skip to main content
Log in

Field trial on use of soybean crude extract for carbonate precipitation and wind erosion control of sandy soil

大豆粗提脲酶诱导碳酸钙沉积抑制风沙土风蚀的现场试验

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas. The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation (SICP) on reducing wind erosion risk of sandy soil. Field tests were carried out in Ulan Buh Desert, Ningxia Hui Autonomous Region, China. Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil. The optimal cementation solution (urea-CaCl2) concentration and spraying volume, according to experiments conducted on sandy land, were 0.2 mol/L and 4 L/m2, respectively. Under this condition, the CaCO3 content was approximately 0.45%, the surface strength of sandy soil could reach 306.2 kPa, and the depth of wind erosion was approximately zero, after 30 d completion of SICP treatment. Soil surface strength declined with the increase of time, and long-term sand fixation effects of SICP treatment varied depending on topography. Whereas wind erosion in the top area of the windward slope was remarkable, sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment. Scanning electron microscopy (SEM) tests with energy dispersive X-ray (EDX) confirmed the precipitation of CaCO3 and its bridge effect. These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.

摘要

风蚀作用是干旱, 半干旱地区土地荒漠化和沙尘暴形成的主要原因. 本文通过现场试验研究用大豆粗提脲酶诱导碳酸钙沉积法抑制风沙土风蚀的可行性. 试验场地位于中国宁夏回族自治区乌兰布和沙漠地区. 结果表明, 该方法能够显著提高风沙土的表面强度和抗风蚀能力. 适合当地的最优胶结液 (尿素-氯化钙溶液) 浓度为 0.2 mol/L, 最优喷洒量为 4 L/m2. 在上述用量下, 大豆粗提脲酶诱导碳酸钙沉积法处理 30 d 后风沙土表层碳酸钙含量为 0.45%, 表面强度达 306.2 kPa, 风蚀深度几乎为零. 风沙土表面强度随时间的延长而下降, 且其长期固沙效果与地形有关. 大豆粗提脲酶诱导碳酸钙沉积法处理 12 个月后, 沙丘迎风面底部和沙地风蚀程度显著降低且仍能保持较高的表面强度, 而沙丘迎风面顶部风蚀较为明显. 扫描电子显微镜和 X 射线能谱仪测试结果证实了碳酸钙晶体的形成及其桥接效应. 结果表明, 大豆粗提脲酶诱导碳酸钙沉积法能够有效降低风沙土的可蚀性且具有良好的耐久性, 是沙漠地区抑制风沙土风蚀的候选方案.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JIANG Liang-liang, JIAPAER G, BAO An-ming, KURBAN A, GUO Hao, ZHENG Guo-xiong, DE MAEYER P. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia [J]. Ecological Indicators, 2019, 104: 195–208. DOI: https://doi.org/10.1016/j.ecolind.2019.04.067.

    Article  Google Scholar 

  2. KHEIRABADI H, MAHMOODABADI M, JALALI V, NAGHAVI H. Sediment flux, wind erosion and net erosion influenced by soil bed length, wind velocity and aggregate size distribution [J]. Geoderma, 2018, 323: 22–30. DOI: https://doi.org/10.1016/j.geoderma.2018.02.042.

    Article  Google Scholar 

  3. REYNOLDS J F, SMITH D M S, LAMBIN E F, TURNER II B L, MORTIMORE M, BATTERBURY S P J, DOWNIN T E, DOWLATABADI H, FERNANDEZ, RJ, HERRICK J E, HUBER-SANNWALD E, JIANG Hong, LEEMANS R, LYNAM T, MAESTRE F T, AYARZA M, WALKER B. Global desertification: Building a science for dryland development [J]. Science, 2007, 316(5826): 847–851. DOI: https://doi.org/10.1126/science.1131634.

    Article  Google Scholar 

  4. FEIZI Z, AYOUBI S, MOSADDEGHI M R, BESALATPOUR A A, ZERAATPISHEH M, RODRIGOCOMINO J. A wind tunnel experiment to investigate the effect of polyvinyl acetate, biochar, and bentonite on wind erosion control [J]. Archives of Agronomy and Soil Science, 2019, 65(8): 1049–1062. DOI: https://doi.org/10.1080/03650340.2018.1548765.

    Article  Google Scholar 

  5. LAN Shu-bin, ZHANG Qing-yi, WU Li, LIU Yong-ding, ZHANG De-lu, HU Chun-xiang. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities [J]. Environmental Science & Technology, 2013, 48(1): 307–315. DOI: https://doi.org/10.1021/es403785j.

    Article  Google Scholar 

  6. MALEKI M, EBRAHIMI S, ASADZADEH F, TABRIZI M E. Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil [J]. International Journal of Environmental Science and Technology, 2016, 13(3): 937–944. DOI: https://doi.org/10.1007/s13762-015-0921-z.

    Article  Google Scholar 

  7. MA Rui, LI Jun-ran, MA Yan-jun, SHAN Li-shan, LI Xue-lin, WEI Lin-yuan. A wind tunnel study of the airflow field and shelter efficiency of mixed windbreaks [J]. Aeolian Research, 2019, 41: 100544. DOI: https://doi.org/10.1016/j.aeolia.2019.100544.

    Article  Google Scholar 

  8. MA Guo-fu, RAN Fei-tian, FENG En-ke, DONG Zhi-bao, LEI Zi-qiang. Effectiveness of an eco-friendly polymer composite sand-fixing agent on sand fixation [J]. Water, Air, & Soil Pollution, 2015, 226(7): 221. DOI: https://doi.org/10.1007/s11270-015-2490-7.

    Article  Google Scholar 

  9. SAIEDI N, BESALATPOUR A A, SHIRANI H, ABBASZADEH DEHAJI P, ESFANDIARPOUR I, FARAMARZI M. Aggregation and fractal dimension of aggregates formed in sand dunes stabilized by Pistachio PAM and PistachioPVAc mulches [J]. European Journal of Soil Science, 2017, 68(5): 783–791. DOI: https://doi.org/10.1111/ejss.12458.

    Article  Google Scholar 

  10. BELNAP J, WEBER B, BÜDEL B. Biological soil crusts as an organizing principle in drylands [M]//Biological Soil Crusts: An Organizing Principle in Drylands. Cham: Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-30214-0_1.

    Google Scholar 

  11. CHANG I, PRASIDHI A K, IM J, SHIN H D, CHO G C. Soil treatment using microbial biopolymers for anti-desertification purposes [J]. Geoderma, 2015, 253: 39–47. DOI: https://doi.org/10.1016/j.geoderma.2015.04.006.

    Article  Google Scholar 

  12. CHOCK T, ANTONINKA A J, FAIST A M, BOWKER M A, BELNAP J, BARGER N N. Responses of biological soil crusts to rehabilitation strategies [J]. Journal of Arid Environments, 2019, 163: 77–85. DOI: https://doi.org/10.1016/j.jaridenv.2018.10.007.

    Article  Google Scholar 

  13. PENG Cheng-rong, ZHENG Jiao-li, HUANG Shun, LI Shuang-shuang, LI Dun-hai, CHENG Ming-yu, LIU Yong-ding. Application of sodium alginate in induced biological soil crusts: enhancing the sand stabilization in the early stage [J]. Journal of Applied Phycology, 2017, 29(3): 1421–1428. DOI: https://doi.org/10.1007/s10811-017-1061-2.

    Article  Google Scholar 

  14. ROSSI F, MUGNAI G, DE PHILIPPIS R. Complex role of the polymeric matrix in biological soil crusts [J]. Plant and Soil, 2018, 429(1, 2): 19–34. DOI: https://doi.org/10.1007/s11104-017-3441-4.

    Article  Google Scholar 

  15. ZHOU Xiang-jun, KE Tan, LI Shuang-xi, DENG Song-qiang, AN Xiao-liang, MA Xiao, PHILIPPIS R D, CHEN Lan-zhou. Induced biological soil crusts and soil properties varied between slope aspect, slope gradient and plant canopy in the Hobq desert of China [J]. CATENA, 2020, 190: 104559. DOI: https://doi.org/10.1016/j.catena.2020.104559.

    Article  Google Scholar 

  16. DENG Song-qiang, ZHANG Da-yi, WANG Gao-hong, ZHOU Xiang-jun, YE Chao-ran, FU Tao-ran, KE Tan, ZHANG Yu-rui, LIU Yong-ding, CHEN Lan-zhou. Biological soil crust succession in deserts through a 59-year-long case study in China: How induced biological soil crust strategy accelerates desertification reversal from decades to years [J]. Soil Biology and Biochemistry, 2020, 141: 107665. DOI: https://doi.org/10.1016/j.soilbio.2019.107665.

    Article  Google Scholar 

  17. DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381–1392. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).

    Article  Google Scholar 

  18. IVANOV V, CHU Jian. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ [J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(2): 139–153. DOI: https://doi.org/10.1007/s11157-007-9126-3.

    Article  Google Scholar 

  19. van PAASSEN L A, GHOSE R, van DER LINDEN T J, van DER STAR W R, van LOOSDRECHT M C. Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721–1728. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.

    Article  Google Scholar 

  20. IVANOV V, STABNIKOV V. Soil surface biotreatment [M]. Singapore: Springer, 2017. DOI: https://doi.org/10.1007/978-981-10-1445-1.

    Book  Google Scholar 

  21. MUJAH D, SHAHIN M A, CHENG Liang. State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization [J]. Geomicrobiology Journal, 2017, 34(6): 524–537. DOI: https://doi.org/10.1080/01490451.2016.1225866.

    Article  Google Scholar 

  22. HE Jia, GAO Yu-feng, GU Zhang-xiang, CHU Jian, WANG Li-ya. Characterization of crude bacterial Urease for CaCO3 precipitation and cementation of Silty sand [J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020071. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.

    Article  Google Scholar 

  23. Al QABANY A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138(8): 992–1001. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.

    Google Scholar 

  24. de MUYNCK W, de BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials: A review [J]. Ecological Engineering, 2010, 36(2): 118–136. DOI: https://doi.org/10.1016/j.ecoleng.2009.02.006.

    Article  Google Scholar 

  25. DHAMI N K, QUIRIN M E C, MUKHERJEE A. Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves [J]. Ecological Engineering, 2017, 103: 106–117. DOI: https://doi.org/10.1016/j.ecoleng.2017.03.007.

    Article  Google Scholar 

  26. GAO Yu-feng, HANG Lei, HE Jia, CHU Jian. Mechanical behaviour of biocemented sands at various treatment levels and relative densities [J]. Acta Geotechnica, 2019, 14(3): 697–707. DOI: https://doi.org/10.1007/s11440-018-0729-3.

    Article  Google Scholar 

  27. JAIN S, ARNEPALLI D N. Biochemically induced carbonate precipitation in aerobic and anaerobic environments by Sporosarcina pasteurii [J]. Geomicrobiology Journal, 2019, 36(5): 443–451. DOI: https://doi.org/10.1080/01490451.2019.1569180.

    Article  Google Scholar 

  28. WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique [J]. Geomicrobiology Journal, 2007, 24(5): 417–423. DOI: https://doi.org/10.1080/01490418701436185.

    Article  Google Scholar 

  29. MONTOYA B M, DEJONG J T, BOULANGER R W. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation [J]. Géotechnique, 2013, 63(4): 302–312. DOI: https://doi.org/10.1680/geot.SIP13.P.019.

    Article  Google Scholar 

  30. OMOREGIE A I, KHOSHDELNEZAMIHA G, SENIAN N, ONG D E L, NISSOM P M. Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials [J]. Ecological Engineering, 2017, 109: 65–75. DOI: https://doi.org/10.1016/j.ecoleng.2017.09.012.

    Article  Google Scholar 

  31. LIU Lu, LIU Han-long, XIAO Yang, CHU Jian, XIAO Peng, WANG Yang. Biocementation of calcareous sand using soluble calcium derived from calcareous sand [J]. Bulletin of Engineering Geology and the Environment, 2018, 77(4): 1781–91. DOI: https://doi.org/10.1007/s10064-017-1106-4.

    Article  Google Scholar 

  32. CHU Jian, STABNIKOV V, IVANOV V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil [J]. Geomicrobiology Journal, 2012, 29(6): 544–549. DOI: https://doi.org/10.1080/01490419.2011.592929.

    Article  Google Scholar 

  33. YANG Shang-chuan, LESHCHINSKY B, CUI Kai, ZHANG Fei, GAO Yu-feng. Influence of failure mechanism on seismic bearing capacity factors for shallow foundations near slopes [J]. Geotechnique, 2020: 1–46. DOI: https://doi.org/10.1680/jgeot.19.P.329.

  34. KHADIM H J, AMMAR S H, EBRAHIM S E. Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses soil [J]. Environmental Technology & Innovation, 2019, 14: 100315. DOI: https://doi.org/10.1016/j.eti.2019.100315.

    Article  Google Scholar 

  35. JIANG Ning-Jun, LIU Rui, DU Yan-Jun, BI Yu-zhang. Microbial induced carbonate precipitation for immobilizing Pb contaminants: Toxic effects on bacterial activity and immobilization efficiency [J]. Science of the Total Environment, 2019, 672: 722–731. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.294.

    Article  Google Scholar 

  36. CHEN Huai-cheng, QIAN Chun-xiang, HUANG Hao-liang. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively [J]. Construction and Building Materials, 2016, 126: 297–303. DOI: https://doi.org/10.1016/j.conbuildmat.2016.09.023.

    Article  Google Scholar 

  37. MEYER F D, BANG S, MIN S, STETLER L D, BANG S S. Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control [C]//Geo-frontiers 2011: Advances in Geotechnical Engineering 2011. Dallas: ASCE, 2011: 4002–4011. DOI: https://doi.org/10.1061/41165(397)409.

    Chapter  Google Scholar 

  38. STABNIKOV V, CHU Jian, MYO A N, IVANOV V. Immobilization of sand dust and associated pollutants using bioaggregation [J]. Water, Air, & Soil Pollution, 2013, 224(9): 1631. DOI: https://doi.org/10.1007/s11270-013-1631-0.

    Article  Google Scholar 

  39. ZOMORODIAN S M A, GHAFFARI H, O’KELLY B C. Stabilisation of crustal sand layer using biocementation technique for wind erosion control [J]. Aeolian Research, 2019, 40: 34–41. DOI: https://doi.org/10.1016/j.aeolia.2019.06.001.

    Article  Google Scholar 

  40. JIANG Ning-jun, TANG Chao-sheng, YIN Li-yang, XIE Yue-han, SHI Bin. Applicability of microbial calcification method for sandy-slope surface erosion control [J]. Journal of Materials in Civil Engineering, 2019, 31(11): 04019250. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002897.

    Article  Google Scholar 

  41. MOHEBBI M M, HABIBAGAHI G, NIAZI A, GHAHRAMANI A. A laboratory investigation of suppression of dust from wind erosion using biocementation with Bacillus amyloliquefaciens [J]. Scientia Iranica, 2019, 26(5): 2665–2677. DOI: https://doi.org/10.24200/sci.2018.20220.

    Google Scholar 

  42. NAM I H, ROH S B, PARK M J, CHON C M, KIM J G, JEONG S W, SONG H, YOON M H. Immobilization of heavy metal contaminated mine wastes using Canavalia ensiformis extract [J]. Catena, 2016, 136: 53–58. DOI: https://doi.org/10.1016/j.catena.2015.07.019.

    Article  Google Scholar 

  43. HAMDAN N, KAVAZANJIAN E Jr. Enzyme-induced carbonate mineral precipitation for fugitive dust control [J]. Géotechnique, 2016, 66(7): 546–555. DOI: https://doi.org/10.1680/jgeot.15.P.168.

    Article  Google Scholar 

  44. GAO Yu-feng, TANG Xin-yi, CHU Jian, HE Jia. Microbially induced calcite precipitation for seepage control in sandy soil [J]. Geomicrobiology Journal, 2019, 36(4): 366–375. DOI: https://doi.org/10.1080/01490451.2018.1556750.

    Article  Google Scholar 

  45. ROLSTON D E, LOUIE D T, BEDAIWY M N A. Micropenetrometer for in situ measurement of soil surface strength [J]. Soil Science Society of America Journal, 1991, 55(2): 481–485. DOI: https://doi.org/10.2136/sssaj1991.03615991801980020031x.

    Article  Google Scholar 

  46. JUNGERIUS P D, VAN DER MEULEN F. The development of dune blowouts, as measured with erosion pins and sequential air photos [J]. Catena, 1989, 16(4, 5): 369–376. DOI: https://doi.org/10.1016/0341-8162(89)90021-0.

    Article  Google Scholar 

  47. TELYSHEVA G, SHULGA G. Silicon-containing polycomplexes for protection against wind erosion of sandy soil [J]. Journal of Agricultural Engineering Research, 1995, 62(4): 221–227. DOI: https://doi.org/10.1006/jaer.1995.1080.

    Article  Google Scholar 

  48. Al-THAWADI S. High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria [D]. Murdoch: Murdoch University, 2008. https://researchrepository.murdoch.edu.au/id/eprint/721/.

    Google Scholar 

  49. OKWADHA G D, LI Jin. Optimum conditions for microbial carbonate precipitation [J]. Chemosphere, 2010, 81(9): 1143–1148. DOI: https://doi.org/10.1016/j.chemosphere.2010.09.066.

    Article  Google Scholar 

  50. de MUYNCK W, de BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials: A review [J]. Ecological Engineering, 2010, 36(2): 118–136. DOI: https://doi.org/10.1016/j.ecoleng.2009.02.006.

    Article  Google Scholar 

  51. VENDA OLIVEIRA P J, NEVES J P. Effect of organic matter content on enzymatic biocementation process applied to coarse-grained soils [J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019121. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002774.

    Article  Google Scholar 

  52. DEJONG J T, MORTENSEN B M, MARTINEZ B C, NELSON D C. Bio-mediated soil improvement [J]. Ecological Engineering, 2010, 36(2): 197–210. DOI: https://doi.org/10.1016/j.ecoleng.2008.12.029.

    Article  Google Scholar 

  53. XU Guang, DING Xu-han, KURUPPU M, ZHOU Wei, BISWAS W. Research and application of non-traditional chemical stabilizers on bauxite residue (red sand) dust control, a review [J]. Science of the Total Environment, 2018, 616: 1552–1565. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.158.

    Article  Google Scholar 

  54. XIE Zuo-ming, LIU Yong-ding, HU Chun-hai, CHEN Lan-zhou, LI Dun-hai. Relationships between the biomass of algal crusts in fields and their compressive strength [J]. Soil Biology and Biochemistry, 2007, 39(2): 567–572. DOI: https://doi.org/10.1016/j.soilbio.2006.09.004.

    Article  Google Scholar 

  55. FENG Guang-long, SHARRATT B, VADDELLA V. Windblown soil crust formation under light rainfall in a semiarid region [J]. Soil and Tillage Research, 2013, 128: 91–96. DOI: https://doi.org/10.1016/j.still.2012.11.004.

    Article  Google Scholar 

  56. ARENS S M, van KAAM-PETERS H M E, van BOXEL J H. Air flow over foredunes and implications for sand transport [J]. Earth Surface Processes and Landforms, 1995, 20(4): 315–332. DOI: https://doi.org/10.1002/esp.3290200403.

    Article  Google Scholar 

  57. KIDRON G J, ZOHAR M. Wind speed determines the transition from biocrust-stabilized to active dunes [J]. Aeolian Research, 2014, 15: 261–267. DOI: https://doi.org/10.1016/j.aeolia.2014.04.006.

    Article  Google Scholar 

  58. ADESSI A, de CARVALHO R C, de PHILIPPIS R, BRANQUINHO C, da SILVA, JM. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts [J]. Soil Biology and Biochemistry, 2018, 116: 67–69. DOI: https://doi.org/10.1016/j.soilbio.2017.10.002.

    Article  Google Scholar 

  59. AMIRASLANI F, DRAGOVICH D. Combating desertification in Iran over the last 18 years: An overview of changing approaches [J]. Journal of Environmental Management, 2011, 92(1): 1–13. DOI: https://doi.org/10.1016/j.jenvman.2010.08.012.

    Article  Google Scholar 

  60. NAFISI A, SAFAVIZADEH S, MONTOYA B M. Influence of microbe and enzyme-induced treatments on cemented sand shear response [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 06019008. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111.

    Article  Google Scholar 

  61. BEATO C, FERNÁNDEZ M S, FERMANI S, REGGI M, NEIRA-CARRILLO A, RAO A, FALINIB G, ARIAS J L. Calcium carbonate crystallization in tailored constrained environments [J]. Cryst Eng Comm, 2015, 17(31): 5953–5961. DOI: https://doi.org/10.1039/C5CE00783F.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by GAO Yu-feng. GAO Yu-feng oversight the research activity planning and execution. MENG Hao, HE Jia, QI Yong-shuai, and HANG Lei conducted the field tests and analyzed the measured data. The initial draft of the manuscript was written by GAO Yu-feng, MENG Hao, and HE Jia. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Yu-feng Gao  (高玉峰).

Additional information

Conflict of interest

GAO Yu-feng, MENG Hao, HE Jia, QI Yong-shuai, and HANG Lei declare that they have no conflict of interest.

Foundation item

Projects(51978244, 51979088, 51608169) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Yf., Meng, H., He, J. et al. Field trial on use of soybean crude extract for carbonate precipitation and wind erosion control of sandy soil. J. Cent. South Univ. 27, 3320–3333 (2020). https://doi.org/10.1007/s11771-020-4549-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4549-x

Key words

关键词

Navigation