Skip to main content
Log in

Application of reflux classifier with closely spaced inclined channels in pre-concentrate process of fine antimony oxide particles

逆流分选柱预富集细粒级氧化锑尾矿的建模与优化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this work, the reflux classifier with closely spaced inclined channels is used as the pre-concentration facility to improve the separation efficiency before the shaking table separation. Three operating parameters of reflux classifier (RC) to pre-concentrate fine(0.023–0.15 mm) tailings of antimony oxide were optimized by response surface methodology (RSM) using a three-level Box-Behnken design (BBD). The parameters studied for the optimization were feeding speed, underflow, and ascending water speed. Second-order response functions were produced for the Sb grade and recovery rate of the concentrate. Taking advantage of the quadratic programming, when the factors of feeding, underflow and ascending water are respectively 225, 30 and 133 cm3/min, a better result can be achieved for the concentrate grade of 2.31% and recovery rate of 83.17%. At the same time, 70.48% of the tailings with the grade of 0.20% were discarded out of the feeding. The results indicated that the reflux classifier has a good performance in dealing with fine tailings of antimony oxide. Moreover, second-order polynomial equations, ANOVA, and three-dimensional surface plots were developed to evaluate the effects of each parameter on Sb grade and recovery rate of the concentrate.

摘要

本文采用窄斜板间距的逆流分选柱作为摇床分选前的预富集装置, 旨在提高其分选效率. 采用响应面法 (RSM), 并利用三层 Box-Behnken design (BBD) 对逆流分选柱 (RC) 预富集细粒级氧化锑尾矿 (0.023∼0.015 mm) 的三个操作实验参数进行优化. 优化研究的参数为给矿速度, 底流速度, 上升水流速. 用二阶响应函数对精矿产物的锑品位和精矿回收率进行拟合, 并利用二次规划法对实验操作参数进行优化, 可得当给矿速度, 底流速度, 上升水流速分别为 225,30 和 133 cm 3/min 时, 可得品位为 2.31%, 回收率为 83.17% 的精矿产品. 同时, 有 70.48% 的品位为 0.20% 的尾矿被抛除. 结果表明, 该 逆流分选柱对氧化锑细粒尾矿的处理效果较好. 此外, 还建立了二阶多项式方程, 方差分析和三维曲 面图来评价各操作参数对锑品位和精矿回收率的影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ANDERSON C G. The metallurgy of antimony [J]. Chemie der Erde, 2012, 72: 3–8. DOI: https://doi.org/10.1016/j.chemer.2012.04.001.

    Article  Google Scholar 

  2. GUTKNECHT T, FORSGREN C, STEENARIA B M. Investigations into high temperature separation of antimony from metal oxide varistors [J]. Journal of Cleaner Production, 2017, 162: 474–483. DOI: https://doi.org/10.1016/j.jclepro.2017.06.033.

    Article  Google Scholar 

  3. GUO Zhen-xun. Antimony ore processing technology [J]. Foreign Metal Ore Processing, 1983(6): 13–23. (in Chinese)

  4. LAI Ren-kui, YU Jian-yi, LIU Bang-rui. New method of flotation separation of antimony oxide and quartz [J]. China Mine Engineering, 1991(2): 44–45. (in Chinese)

  5. WANG Jin-ming, WANG Yu-hua, YU Shi-lei, YU Sheng-li, YU Fu-shun. Flotation behavior and mechanism of cervantite with sodium dodecyl sulfate [J]. Journal of Central South University (Science and Technology), 2013, 44(10): 3955–3962. (in Chinese)

    Google Scholar 

  6. GALVIN K P, DOROODCHI E, CALLEN A M, LAMBERT N. PRATTEN S J. Pilot plant trial of the reflux classifier [J]. Minerals Engineering, 2002, 15: 19–25. DOI: https://doi.org/10.1016/S0892-6875(01)00193-5.

    Article  Google Scholar 

  7. GALVIN K P, CALLEN A, ZHOU J, DOROODCHI E. Gravity separation using a full scale reflux classifier [M]//MEMBREY W B. Proceedings, Tenth Australian Coal Preparation Conference, Paper 2004.H21.

  8. GALVIN K P, CALLEN A, ZHOU J, DOROODCHI E. Performance of the reflux classifier for gravity separation at full scale [J]. Minerals Engineering, 2005, 18: 19–24. DOI: https://doi.org/10.1016/j.mineng.2004.05.023.

    Article  Google Scholar 

  9. GALVIN K P, WALTON K, ZHOU J. How to elutriate particles, according to their density [J]. Chemical Engineering Science, 2009, 64: 2003–2010. DOI: https://doi.org/10.1016/j.ces.2009.01.031.

    Article  Google Scholar 

  10. BOYCOTT A E. Sedimentation of blood corpuscles [J]. Nature, 1920, 104: 532. DOI: https://doi.org/10.1038/104532b0.

    Article  Google Scholar 

  11. PONDER P. On sedimentation and Rouleaux formation [J]. Quarterly Journal of Experimental Physiology, 1925, 15: 235–252. DIO: https://doi.org/10.1113/expphysiol.1925.sp000356.

    Article  Google Scholar 

  12. NAKAMURA H, KURODA K. The cause of the accelerated sedimentation rate of suspensions in inclined channel [J]. Keijo Journal of Medicine, 1937, 8: 256–296. http://c.21-bal.com/law/7087/index.html. (in French)

    Google Scholar 

  13. ZHOU J, WALTON K, LASKOVSKI D, DUNCAN P, GALVIN K P. Enhanced separation of mineral sands using the reflux classifier [J]. Minerals Engineering, 2006, 19: 1573–1579. DOI: https://doi.org/10.1016/j.mineng.2006.08.009.

    Article  Google Scholar 

  14. VANCE W H, MOULTON R W. A study of slip ratios for the flow of steam-water mixtures at high void fraction [J]. AIChE Journal, 1965, 11(6): 1114–1124. DIO: https://doi.org/10.1002/aic.690110628.

    Article  Google Scholar 

  15. MUNROE H S. The English versus the continental system of jigging-is close sizing advantageous [M]. Transactions of the American Institute of Mining Engineers, 1888, 17: 637–659.

    Google Scholar 

  16. BIRD B, STEWART W, LIGHTFOOT. Transport phenomena [M]. New York: John Wiley and Sons, 1976: 62. DOI: https://doi.org/10.1002/aic.690070245.

    Google Scholar 

  17. LASKOVSKI D, DUNCAN P, STEVENSON P, ZHOU J, GALVIN K P. Segregation of hydraulically suspended particles in inclined channels [J]. Chemical Engineering Science, 2006, 61: 7269–7278. DOI: https://doi.org/10.1016/j.ces.2006.08.024.

    Article  Google Scholar 

  18. GALVIN K P, ZHOU J, WALTON K. Application of closely spaced inclined channels in gravity separation of fine particles [J]. Minerals Engineering, 2010, 23: 326–338. DOI: https://doi.org/10.1016/j.mineng.2009.09.015.

    Article  Google Scholar 

  19. SYED N H, DICKINSON J E, GALVIN K P, MORENO-ATANASIO R. Continuous, dynamic and steady state simulation of the reflux classifier using a segregation-dispersion model [J]. Minerals Engineering, 2018, 115: 53–67. DOI: https://doi.org/10.1016/j.mineng.2017.10.010.

    Article  Google Scholar 

  20. BOX G E P, WILSON K B. On the experimental attainment of optimum conditions (with discussion) [J]. Journal Royal Statistical Society, 1951, 8: 622–654. DOI: https://doi.org/10.1111/j.2517-6161.1951.tb00067.x.

    Google Scholar 

  21. MYERS R H, MONTGOMERY D C. Response surface methodology [M]. New York: Wiley and Sons, 1995.

    MATH  Google Scholar 

  22. ZENG Fan-sen. Experimental study and flow field simulation of pre-concentrate of cervantite by Reflux Classifer [D]. Changsha: Central South University, 2017. (in Chinese)

    Google Scholar 

  23. TRIPATHY S K, MURTHY Y R. Modeling and optimization of spiral concentrator for separation of ultrafine chromite [J]. Powder Technology, 2012, 221: 387–394. DOI: https://doi.org/10.1016/j.powtec.2012.01.035.

    Article  Google Scholar 

  24. ASLAN N. Modeling and optimization of multi-gravity separator to produce celestite concentrate [J]. Powder Technology, 2007, 174: 127–133. DOI: https://doi.org/10.1016/j.powtec.2007.01.007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LIU Zhen-qiang wrote the first draft of the manuscript and revised the manuscript. LU Dong-fang provided the research ideas and formulated the overall research objectives. CHU Hao-ran conducted the experiments and analyzed the test data. WANG Yu-hua, ZHENG Xia-yu and CHEN Fu-lin offered some valuable suggestions for the contents of the manuscript.

Corresponding authors

Correspondence to Dong-fang Lu  (卢东方) or Hao-ran Chu  (褚浩然).

Additional information

Conflict of interest

LIU Zhen-qiang, LU Dong-fang, WANG Yu-hua, CHU Hao-ran, ZHENG Xia-yu and CHEN Fu-lin declare that they have no conflict of interest.

Foundation item

Project(2015SK20792) supported by Key Province Key Technology Research and Development Program of the Ministry of Science and Technology of Hunan, China; Projects(2019zzts703, 2020zzts740, 2020zzts202) supported by the Fundamental Research Funds for the Central Universities of China; Project(2020P4FZG03A) supported by State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zq., Lu, Df., Wang, Yh. et al. Application of reflux classifier with closely spaced inclined channels in pre-concentrate process of fine antimony oxide particles. J. Cent. South Univ. 27, 3290–3301 (2020). https://doi.org/10.1007/s11771-020-4547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4547-z

Key words

关键词

Navigation