Skip to main content
Log in

Sulfidation mechanism of cerussite in the presence of sulphur at high temperatures

白铅矿与硫磺在高温下的硫化机理

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, sulfidation mechanism of cerussite in the presence of sulphur at high temperatures was investigated based on micro-flotation, X-ray powder diffractometry (XRD), electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The micro-flotation test results showed that flotation recovery of the treated cerussite increased to above 80% under a suitable flotation condition. It was found that the S/PbCO3 mole ratio and pH obviously affected flotation recovery. XRD analysis results confirmed that the cerussite was decomposed into massicot and then was transformed into mainly PbS and PbO·PbSO4 after sulfidation roasting. EPMA analysis results demonstrated that surface of the obtained massicot was smooth, but surface of the artificial galena was rough and even porous. Content of oxygen decreased, whereas content of sulphur increased with an increase in the S/PbCO3 mole ratio. XPS analysis results revealed that various lead-bearing species, including mainly PbS, PbSO4 and PbO·PbSO4, were generated at the surface. Formation of PbS was advantageous to flotation of the treated cerussite. Based on these results, a reaction model of the cerussite sulfurized with sulphur was proposed.

摘要

本文采用微浮选、X 射线粉末衍射(XRD)、电子探针(EPMA)和X 射线光电子能谱(XPS)等分析 手段, 研究了高温下硫磺与白铅矿的硫化机理。浮选试验结果表明, 在适宜的浮选条件下, 处理后的 白铅矿浮选回收率提高到80%以上。S/PbCO3 摩尔比和pH 值对浮选回收率有明显影响。XRD 分析结 果证实, 硫化焙烧后的白铅矿分解为氧化铅, 然后转化为以PbS 为主和PbO∙PbSO4 的含铅物种。EPMA 分析结果表明, 获得的铅黄表面光滑, 但合成的人工方铅矿表面粗糙, 甚至孔隙较多。随着S/PbCO3 摩尔比的增加, 氧含量降低, 硫含量增加。XPS 分析结果表明, 表面生成了以PbS 为主以及PbSO4 和PbO∙PbSO4 的多种含铅物种。PbS 的形成有利于处理后白铅矿的浮选。基于这些研究结果, 提出了 白铅矿与硫磺在高温条件下的反应模型。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN Lu-zheng, WANG Cong-bing, ZHENG Yong-xing, LV Jin-fang, LAI Zhen-ning, PANG Jie. Flotation of a low-grade zinc oxide ore after surface modification at high temperature [J]. JOM, 2019, 71(9): 3166–3172. DOI: https://doi.org/10.1007/s11837-019-03608-3.

    Article  Google Scholar 

  2. XUE Chun-ji, ZENG Rong, LIU Shu-wen, CHI Guoxiang, QING Hai-ruo, CHEN Yu-chuan, YANG Jian-min, WANG Deng-hong. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit. Western Yunnan, South China: A review [J]. Ore Geology Reviews, 2007, 31(1–4): 337–359. DOI: https://doi.org/10.1016/j.oregeorev.2005.04.007.

    Article  Google Scholar 

  3. FA K Q, MILLER J D, JIANG T, LI G H. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores [J]. Transactions of Nonferrous Metals Society of China, 2005, 15(5): 1138–1144. DOI: https://doi.org/10.1016/j.scriptamat.2005.06.025.

    Google Scholar 

  4. ONAL G, BULUT G, GÜL A, KANGAL O, PEREK K T, ARSLAN F. Flotation of Aladag oxide lead-zinc ores [J]. Minerals Engineering, 2005, 18(2): 279–282. DOI: https://doi.org/10.1016/j.mineng.2004.10.018.

    Article  Google Scholar 

  5. WANG Z, PENG Y, ZHENG Y X, DING W, WANG J M, XU L H. Improved flotation of artificial galena using a new catanionic mixture [J]. Minerals Engineering, 2020, 148: 106206. DOI: https://doi.org/10.1016/j.mineng.2020.106206.

    Article  Google Scholar 

  6. SHIROTA Y, NIKI K, SHINDO H. Stabilities of crystal faces of aragonite-type strontianite (SrCO3) and cerussite (PbCO3) compared by AFM observation of facet formation in acid [J]. Journal of Crystal Growth, 2011, 324(1): 190–195. DOI: https://doi.org/10.1016/j.jcrysgro.2011.03.033.

    Article  Google Scholar 

  7. ZHENG Yong-xing, LIU Wei, QIN Wen-qing, HAN Jun-wei, YANG Kang, LUO Hong-lin. Selective reduction of PbSO4 to PbS with carbon and flotation treatment of synthetic galena [J]. Physicochemical Problems of Mineral Processing, 2015, 51(2): 535–546. DOI: https://doi.org/10.5277/ppmp150214.

    Google Scholar 

  8. HERRERA-URBINA R, SOTILLO F J, FUERSTENAU D W. Amyl xanthate uptake by natural and sulfide-treated cerussite and galena [J]. International Journal of Mineral Processing, 1998, 55(2): 113–128. DOI: https://doi.org/10.1016/s0301-7516(98)00028-3.

    Article  Google Scholar 

  9. FUERSTENAU M C, OLIVAS S A, HERRERA-URBINA R, HAN K N. Surface characteristics and flotation behavior of anglesite and cerussite [J]. International Journal of Mineral Processing, 1987, 20(1,2): 73–85. DOI: https://doi.org/10.1016/0301-7516(87)90018-4.

    Article  Google Scholar 

  10. GUSH J. Flotation of oxide minerals by sulphidization-the development of a sulphidization control system for laboratory testwork [J]. Journal of the Southern African Institute of Mining and Metallurgy, 2005, 105(3): 193–197. DOI: 000228661200010.

    Google Scholar 

  11. LI Yong, WANG Ji-kun, CHANG Wei, LIU Chun-xia, JIANG Ji-bo, WANG Fan. Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur [J]. Minerals Engineering, 2010, 23(7): 563–566. DOI: https://doi.org/10.1016/j.mineng.2010.01.004.

    Article  Google Scholar 

  12. ZHENG Yong-xing, LV Jin-fang, WANG Hua, WEN Shu-ming, HUANG Ling-yun. Efficient sulfidization of lead oxide at high temperature using pyrite as vulcanizing reagent [J]. Physicochemical Problems of Mineral Processing, 2018, 54(2): 270–277. DOI: https://doi.org/10.5277/ppmp1813.

    Google Scholar 

  13. ZHENG Yong-xing, LÜ Jin-fang, LIU Wei, QIN Wen-qing, WEN Shu-ming. An innovative technology for recovery of zinc, lead and silver from zinc leaching residue [J]. Physicochemical Problems of Mineral Processing, 2016, 52(2): 943–954. DOI: https://doi.org/10.5277/ppmp160233.

    Google Scholar 

  14. ZHENG Yong-xing, LIU Wei, QIN Wen-qing, JIAO Fen, HAN Jun-wei, YANG Kang, LUO Hong-lin. Sulfidation roasting of lead and zinc carbonate with sulphur by temperature gradient method [J]. Journal of Central South University, 2015, 22: 1635–1642. DOI: https://doi.org/10.1007/s11771-015-2681-9.

    Article  Google Scholar 

  15. LÜ Jin-fang, TONG Xiong, ZHENG Yong-xing, XIE Xian, WANG Cong-bing. Study on the surface sulfidization behavior of smithsonite at high temperature [J]. Applied Surface Science, 2018, 437: 13–18. DOI: https://doi.org/10.1016/j.apsusc.2017.12.163.

    Article  Google Scholar 

  16. ROINE A. Outokumpu HSC chemistry for windows: Chemical reaction and equilibrium software with extensive thermochemical database [M]. Pori: Outokumpu Research OY, 2002.

    Google Scholar 

  17. JIA Yun, HUANG Xiao-ping, HUANG Kai-hua, WANG Shuai, CAO Zhan-fang, ZHONG Hong. Synthesis, flotation performance and adsorption mechanism of 3-(ethylamino)-N-phenyl-3-thioxopropanamide onto galena/sphalerite surfaces [J]. Journal of Industrial and Engineering Chemistry, 2019, 77: 416–425. DOI: https://doi.org/10.1016/j.jiec.2019.05.005.

    Article  Google Scholar 

  18. IKUMAPAYI F, MAKITALO M, JOHANSSON B, RAO K H. Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena [J]. Minerals Engineering, 2012, 39: 77–88. DOI: https://doi.org/10.1016/j.mineng.2012.07.016.

    Article  Google Scholar 

  19. OSHEROV A, MATMOR M, FROUMIN N, ASHKENASY N, GOALN Y. Surface termination control in chemically deposited PbS films: Nucleation and growth on GaAs(111)A and GaAs(111)B [J]. The Journal of Physical Chemistry C, 2011, 115(33): 16501–16508. DOI: https://doi.org/10.1021/jp204175e.

    Article  Google Scholar 

  20. KANNAN K, MUTHURAMAN G, MOON I S. Controlled synthesis of highly spherical nano-PbO2 particles and their characterization [J]. Materials Letters, 2014, 123: 19–22. DOI: https://doi.org/10.1016/j.matlet.2014.02.083.

    Article  Google Scholar 

  21. SUN Xi-gui, GAO Ke-wei, PANG Xiao-lu, YANG Hui-sheng, VOLINSKY A A. Thickness effects on optical and photoelectric properties of PbSeTeO quaternary thin films prepared by magnetron sputtering [J]. Journal of Materials Science: Materials in Electronics, 2015, 26(10): 7873–7881. DOI: https://doi.org/10.1007/s10854-015-3438-9.

    Google Scholar 

  22. FENG Qi-cheng, WEN Shu-ming, ZHAO Wen-juan, DENG Jiu-shuai, XIAN Yong-jun. Adsorption of sulfide ions on cerussite surfaces and implications for flotation [J]. Applied Surface Science, 2016, 360: 365–372. DOI: https://doi.org/10.1016/j.apsusc.2015.11.035.

    Article  Google Scholar 

  23. LARA R H, BRIONES R, MONROY M G, MULLET M, HUMBERT B, DOSSOT M, NAIA J M, CRUZ R. Galena weathering under simulated calcareous soil conditions [J]. Science of the Total Environment, 2011, 409(19): 3971–3979. DOI: https://doi.org/10.1016/j.scitotenv.2011.06.055.

    Google Scholar 

  24. MIKHLIN Y L, KARACHAROV A A, LIKHATAKI M N. Effect of adsorption of butyl xanthate on galena, PbS, and HOPG surfaces as studied by atomic force microscopy and spectroscopy and XPS [J]. International Journal of Mineral Processing, 2015, 144: 81–89. DOI: https://doi.org/10.1016/j.minpro.2015.10.004.

    Article  Google Scholar 

  25. ZHOU Jing, ZHAO Hong-kai, SHI Jian-feng, CHEN Qing-de, SHEN Xing-hai. Radiolytic synthesis of prismatical PbSO4 microcrystals [J]. Radiation Physics and Chemistry, 2014, 97: 366–369. DOI: https://doi.org/10.1016/j.radphyschem.2013.07.027.

    Article  Google Scholar 

  26. CHASTAIN J. Handbook of X-ray photoelectron spectroscopy [M]. Perkin-Elmer Corporation, 1992, 40: 221. DOI: https://doi.org/10.1016/0009-2614(83)80259-0.

    Google Scholar 

  27. BAI Shao-jun, LI Chun-long, FU Xiang-yu, LIU Jian, WEN Shu-ming. Characterization of zinc sulfide species on smithsonite surfaces during sulfidation processing: Effect of ammonia liquor [J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 19–27. DOI: https://doi.org/10.1016/j.jiec.2017.11.042.

    Article  Google Scholar 

  28. NOWAK P, LAAJALEHTO K. On the interpretation of the XPS spectra of adsorbed layers of flotation collectors-ethyl xanthate on metallic lead [J]. Physicochemical Problems of Mineral Processing, 2007, 41: 107–116. DOI: https://doi.org/10.1002/psp.459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GE Bao-liang designed the experiments; PANG Jie finished most of the experiments; ZHENG Yong-xing wrote the manuscript text; NING Ji-lai assisted the flotation tests of this paper; LÜ Jin-fang devised scheme diagram in Figure 6 and polished this paper.

Corresponding authors

Correspondence to Yong-xing Zheng  (郑永兴) or Jin-fang Lü  (吕晋芳).

Additional information

Conflict of interest

The authors declare no competing financial interests.

Foundation item

Project(51964027) supported by the National Natural Science Foundation of China; Project(2017FB084) supported by the Yunnan Province Applied Basic Research Project, China; Project(2019J0037) supported by the Education Department of Yunnan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Bl., Pang, J., Zheng, Yx. et al. Sulfidation mechanism of cerussite in the presence of sulphur at high temperatures. J. Cent. South Univ. 27, 3259–3268 (2020). https://doi.org/10.1007/s11771-020-4544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4544-2

Key words

关键词

Navigation