Skip to main content
Log in

Preparation of tricalcium silicate and investigation of hydrated cement

硅酸三钙粉末及其水泥的制备与性能研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Tricalcium silicate cement (TSC) has been widely used in dental materials because of its self-setting behavior, good bioactivity, biocompatibility, osteoinductivity, and antibacterial effect. Tricalcium silicate (C3S) powder was prepared by Pechini technique with a calcining temperature of 1300 °C for 3 h. The influence of liquid/powder (L/P) rate on the setting time and the mechanical property of TSC was studied. Characterization methods including XRD, FTIR, SEM-EDS, TEM, and ICP-AES were utilized to study the properties of C3S powder and its hydrated cement. The bioactivity and biocompatibility of the cement were investigated by soaking test and cell culture, respectively. The results show that the L/P rate plays an important role in the setting time and the compressive strength of TSC. The surface of TSC was covered by hydroxyapatite deposition during the immersion experiment and the cells attachment on the surface of TSC was well, which indicated that TSC has good bioactivity and biocompatibility. In addition, TSC has excellent antibacterial properties against Staphylococcus aureus. In conclusion, TSC is a promising candidate for root canal filling materials.

摘要

硅酸三钙水泥(TSC)具有自固化、生物相容性、生物活性、骨诱导性和抗菌性, 在牙科材料中 应用广泛。本文采用Pechini 法在1300 °C 煅烧3 h 成功合成了硅酸三钙粉末。研究了液固比对TSC 凝固时间和强度的影响。利用XRD、FTIR、SEM-EDS、TEM、ICP-AES 等表征方法, 研究了硅酸三 钙粉末和水化后水泥的性能。水泥的体外生物活性和生物相容性采用模拟体液浸泡和细胞实验进行研 究。结果表明, 液固比会显著影响TSC 的初凝、终凝时间和强度。在模拟体液浸泡后, TSC 表面被 羟基磷灰石沉积物覆盖。细胞实验表明细胞能在TSC 表面很好地粘附和生长。这说明TSC 具有优异 的生物活性和生物相容性。此外, TSC 对金黄色葡萄球菌的生长有显著的抑制作用。总之, TSC 有望 广泛应用于根管充填材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIM J, GUK J G, SINGH B, HWANG Y C, SONG S J, KIM H S. Investigation on hydration process and biocompatibility of calcium silicate-based experimental portland cements [J]. Journal of the Korean Ceramic Society, 2019, 56(4): 403–411. DOI: https://doi.org/10.4191/kcers.2019.56.4.09.

    Article  Google Scholar 

  2. TORABINEJAD M, PARIROKH M, DUMMER P M H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview-part II: Other clinical applications and complications [J]. International Endodontic Journal, 2018, 51(3): 284–317. DOI: https://doi.org/10.1111/iej.12843.

    Article  Google Scholar 

  3. PARIROKH M, TORABINEJAD M, DUMMER P M H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview-part I: Vital pulp therapy [J]. International Endodontic Journal, 2018, 51(2): 177–205. DOI: https://doi.org/10.1111/iej.12841.

    Article  Google Scholar 

  4. HOSOYA N, TAKIGAWA T, HORIE T, MAEDA H, YAMAMOTO Y, MOMOI Y, YAMAMOTO K, OKIJI T. A review of the literature on the efficacy of mineral trioxide aggregate in conservative dentistry [J]. Dental Materials Journal, 2019, 38(5): 693–700. DOI: https://doi.org/10.4012/dmj.2018-193.

    Article  Google Scholar 

  5. MESCHI N, LI Xin, van GORP G, CAMILLERI J, van MEERBEEK B, LAMBRECHTS P. Bioactivity potential of Portland cement in regenerative endodontic procedures: From clinic to lab [J]. Dental Materials, 2019, 35(9): 1342–1350. DOI: https://doi.org/10.1016/j.dental.2019.07.004.

    Article  Google Scholar 

  6. TADDEI P, TINTI A, GANDOLFI M G, ROSSI P L, PRATI C. Ageing of calcium silicate cements for endodontic use in simulated body fluids: A micro-Raman study [J]. Journal of Raman Spectroscopy, 2009, 40(12): 1858–1866. DOI: https://doi.org/10.1002/jrs.2333.

    Article  Google Scholar 

  7. CAMILLERI J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial [J]. Dental Materials, 2011, 27(8): 836–844. DOI: https://doi.org/10.1016/j.dental.2011.04.010.

    Article  Google Scholar 

  8. DAWOOD A E, PARASHOS P, WONG R H K, REYNOLDS E C, MANTON D J. Calcium silicate-based cements: Composition, properties, and clinical applications [J]. Journal of Investigative and Clinical Dentistry, 2017, 8(2): 1–15. DOI: https://doi.org/10.1111/jicd.12195.

    Article  Google Scholar 

  9. DUARTE M A H, MARCIANO M A, VIVAN R R, TANOMARU FILHO M, TANOMARU J M G, CAMILLERI J. Tricalcium silicate-based cements: Properties and modifications [J]. Brazilian Oral Research, 2018, 32(S1): 111–118. DOI: https://doi.org/10.1590/1807-3107bor-2018.vol32.0070.

    Google Scholar 

  10. ABUSREWIL S M, MCLEAN W, SCOTT J A. The use of bioceramics as root-end filling materials in periradicular surgery: A literature review [J]. Saudi Dental Journal, 2018, 30(4): 273–282. DOI: https://doi.org/10.1016/j.sdentj.2018.07.004.

    Article  Google Scholar 

  11. JAFARI F, JAFARI S. Composition and physicochemical properties of calcium silicate based sealers: A review article [J]. Journal of Clinical and Experimental Dentistry, 2017, 9: 1249–1255. DOI: https://doi.org/10.4317/jced.54103.

    Article  Google Scholar 

  12. LIU Wen-juan, ZHAI Dong, HUAN Zhi-guang, WU Chengtie, CHANG Jiang. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility [J]. Acta Biomaterialia, 2015, 21: 217–227. DOI: https://doi.org/10.1016/j.actbio.2015.04.012.

    Article  Google Scholar 

  13. LEE S J, MONSEF M, TORABINEJAD M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations [J]. Journal of Endodontics, 1993, 19(11): 541–544. DOI: https://doi.org/10.1016/S0099-2399(06)81282-3.

    Article  Google Scholar 

  14. SIBONI F A O, TADDEI P, ZAMPARINI F, PRATI C, GANDOLFI M G. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate [J]. International Endodontic Journal, 2017, 50: 120–136. DOI: https://doi.org/10.1111/iej.12856.

    Article  Google Scholar 

  15. YAMAMOTO S, HAN L, NOIRI Y, OKIJI T. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement [J]. International Endodontic Journal, 2017, 50: 73–82. DOI: https://doi.org/10.1111/iej.12737.

    Article  Google Scholar 

  16. ZHAO Wen-yuan, CHANG Jiang. Two-step precipitation preparation and self-setting properties of tricalcium silicate [J]. Materials Science and Engineering C, 2008, 28(2): 289–293. DOI: https://doi.org/10.1016/j.msec.2007.01.007.

    Article  Google Scholar 

  17. ZHOU Yan-ling, XU Chen, WANG Xiao-ya, DOU Yuan-dong, HUAN Zhi-guang, CHANG Jiang. Fast setting tricalcium silicate/magnesium phosphate premixed cement for root canal filling [J]. Ceramics International, 2018, 44(3): 3015–3023. DOI: https://doi.org/10.1016/j.ceramint.2017.11.058.

    Article  Google Scholar 

  18. BELLMANN F, DAMIDOT D, MÖSER B, SKIBSTED J. Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate [J]. Cement and Concrete Research, 2010, 40(6): 875–884. DOI: https://doi.org/10.1016/j.cemconres.2010.02.007.

    Article  Google Scholar 

  19. EL-HAMID H K, ABO-ALMAGED H H, RADWAN M M. Synthesis, characterization and antimicrobial activity of nano-crystalline tricalcium silicate bio-cement [J]. Journal of Applied Pharmaceutical Science, 2017, 7: 1–8. DOI: https://doi.org/10.7324/JAPS.2017.71001.

    Google Scholar 

  20. SORRENTINO F. Upscaling the synthesis of tricalcium silicate and alite [J]. Cement Wapno Beton, 2008, 8: 177–183.

    Google Scholar 

  21. FLORESGARAY K A, MARTÍNEZLUÉVANOS A, CRUZORTIZ B R, GARCÍACERDA L A, LÓPEZBADILLO C M. Synthesis of calcium silicates by Pechini method and exchanging ions of sodium alginate-calcium chloride [J]. Journal of the Spanish Ceramic and Glass Society, 2016, 55(6): 239–245. DOI: https://doi.org/10.1016/j.bsecv.2016.05.002. (in Spanish)

    Google Scholar 

  22. GAKI A, PERRAKI T, KAKALI G. Wet chemical synthesis of monocalcium aluminate [J]. Journal of the European Ceramic Society, 2007, 27(2): 1785–1789. DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.05.006.

    Article  Google Scholar 

  23. TAN Yan-ni, LIU Yong, ZHANG Qing, GURPREET B L. Synthesis of pure dicalcium silicate powder by the pechini method and characterization of hydrated cement [J]. Materials Science Forum, 2014, 787: 387–394. DOI: https://doi.org/10.4028/www.scientific.net/MSF.787.387.

    Article  Google Scholar 

  24. KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity? [J]. Biomaterials, 2006, 27(15): 2907–2915. DOI: https://doi.org/10.1016/j.biomaterials.2006.01.017.

    Article  Google Scholar 

  25. ISO/EN 10993-5. Biological evaluation of medical devices-Part 5. Tests for cytotoxicity, in vitro methods: 8.2 tests on extract [S].

  26. LIU W C, WANG H Y, CHEN L C, HUANG S W, WU C T, CHUNG R J. Hydroxyapatite/tricalcium silicate composites cement derived from novel two-step sol-gel process with good biocompatibility and applications as bone cement and potential coating materials [J]. Ceramics International, 2019, 45(5): 5668–5679. DOI: https://doi.org/10.1016/j.ceramint.2018.12.032.

    Article  Google Scholar 

  27. PRATI C, GANDOLFI M G. Calcium silicate bioactive cements: Biological perspectives and clinical applications [J]. Dental Materials, 2015, 31(4): 351–370. DOI: https://doi.org/10.1016/j.dental.2015.01.004.

    Article  Google Scholar 

  28. GRECH L, MALLIA B, CAMILLERI J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials [J]. Dent Mater, 2013, 29(2): e20–e28. DOI: https://doi.org/10.1016/j.dental.2012.11.007.

    Article  Google Scholar 

  29. LIU W C, HU C C, TSENG Y Y, SAKTHIVEL R, FAN K S, WANG A N, WANG Y M, CHUNG R J. Study on strontium doped tricalcium silicate synthesized through sol-gel process [J]. Materials Science and Engineering C, 2020, 108: 110431. DOI: https://doi.org/10.1016/j.msec.2019.110431.

    Article  Google Scholar 

  30. CAMILLERI J, SORRENTINO F, DAMIDOT D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, biodentine and MTA Angelus [J]. Dental Materials, 2013, 29(5): 580–593. DOI: https://doi.org/10.1016/j.dental.2013.03.007.

    Article  Google Scholar 

  31. THOMAS J J. A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration [J]. Journal of the American Ceramic Society, 2007, 90(10): 3282–3288. DOI: https://doi.org/10.1111/j.1551-2916.2007.01858.x.

    Article  Google Scholar 

  32. CUESTA A, ZEA-GARCIA J D, LONDONO-ZULUAGA D, de la TORRE A G, SANTACRUZ I, VALLCORBA O, DAPIAGGI M, SANFÉLIX S G, ARANDA M A G. Multiscale understanding of tricalcium silicate hydration reactions [J]. Scientific Reports, 2018, 8(1): 8544–8565. DOI: https://doi.org/10.1038/s41598-018-26943-y.

    Article  Google Scholar 

  33. JUENGER M C G, MONTEIRO P J M, GARTNER E M, DENBEAUX G P. A soft X-ray microscope investigation into the effects of calcium chloride on tricalcium silicate hydration [J]. Cement and Concrete Research, 2005, 35(1): 19–25. DOI: https://doi.org/10.1016/j.cemconres.2004.05.016.

    Article  Google Scholar 

  34. FRANUS W, PANEK R, WDOWIN M. SEM Investigation of microstructures in hydration products of portland cement [C]//POLYCHRONIADIS E K, ORAL A Y, OZER M. 2nd International Multidisciplinary Microscopy and Microanalysis Congress. Springer International Publishing, 2015: 105–112.

  35. CALLEBAUT K, ELSEN J, van BALEN K, VIAENE W. Historical and scientific study of hydraulic mortars from the 19th century [C]//BARTOS P, GROOT C, HUGHES J. International RILEM Workshop on Historic Mortars: Characteristics and Tests. 2000: 125–133.

  36. HAO Feng-yu, QIN Li-mei, LIU Jing-dong, CHANG Jiang, HUAN Zhi-guang, WU Lin. Assessment of calcium sulfate hemihydrate-tricalcium silicate composite for bone healing in a rabbit femoral condyle model [J]. Materials Science and Engineering C, 2018, 88: 53–60. DOI: https://doi.org/10.1016/j.msec.2018.02.024.

    Article  Google Scholar 

  37. SOUSA A, SOUZA K C, SOUSA E M B. Mesoporous silica/apatite nanocomposite: Special synthesis route to control local drug delivery [J]. Acta Biomaterialia, 2008, 4(3): 671–679. DOI: https://doi.org/10.1016/j.actbio.2007.11.003.

    Article  Google Scholar 

  38. ZHOU Xian-feng, ZHANG Nian-li, MANKOCI S, SAHAI N. Silicates in orthopedics and bone tissue engineering materials [J]. Journal Biomedical Materials Research A, 2017, 105(7): 2090–2102. DOI: https://doi.org/10.1002/jbm.a.36061.

    Article  Google Scholar 

  39. NING Cong-qing, MEHTA J, EL-GHANNAM A. Effects of silica on the bioactivity of calcium phosphate composites in vitro [J]. Journal of Materials Science: Materials in Medicine, 2005, 16(4): 355–360. DOI: https://doi.org/10.1007/s10856-005-0635-8.

    Google Scholar 

  40. WU Meng, TAO Bai-long, WANG Tao, ZHANG Yue, WEI Wen-chao, WANG Chun-yu. Fast-setting and anti-washout tricalcium silicate/disodium hydrogen phosphate composite cement for dental application [J]. Ceramics International, 2019, 45(18): 24182–24192. DOI: https://doi.org/10.1016/j.ceramint.2019.08.127.

    Article  Google Scholar 

  41. NATALE L C, RODRIGUES M C, XAVIER T A, SIMÕES A, DE SOUZA D N, BRAGA R R. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping [J]. International Endodontic Journal, 2015, 48(1): 89–94. DOI: https://doi.org/10.1111/iej.12281.

    Article  Google Scholar 

  42. XU Chen, WEN Yang, ZHOU Yan-ling, ZHU Ya-qin, DOU Yuan-dong, HUAN Zhi-guang, CHANG Jiang. In vitro self-setting properties, bioactivity, and antibacterial ability of a silicate-based premixed bone cement [J]. International Journal of Applied Ceramic Technology, 2018, 15(2): 460–471. DOI: https://doi.org/10.1111/ijac.12813.

    Article  Google Scholar 

  43. RAN Shu-jun, LIU Bin, JIANG Wei, SUN Zhe, LIANG Jing-ping. Transcriptome analysis of enterococcus faecalis in response to alkaline stress [J]. Frontiers in Microbiology, 2015, 6: 1–11. DOI: https://doi.org/10.3389/fmicb.2015.00795.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TAN Yan-ni provided the concept and drafted the manuscript. CHEN Wen-juan did the most of the experiments. LIU Yong helped with the discussion and modified the manuscript. LIU Yan-jun helped with the cell culture and the antibacterial experiment.

Corresponding author

Correspondence to Yan-ni Tan  (谭彦妮).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Foundation item

Project(2019JJ50797) supported by Hunan Provincial Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Yn., Chen, Wj., Liu, Y. et al. Preparation of tricalcium silicate and investigation of hydrated cement. J. Cent. South Univ. 27, 3227–3238 (2020). https://doi.org/10.1007/s11771-020-4542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4542-4

Key words

关键词

Navigation