Skip to main content
Log in

Experimental and numerical evaluations on characteristics of vented methane explosion

甲烷-空气泄爆特性的实验与数值模拟

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To research the characteristics of vented explosion of methane-air mixture in the pipeline, coal mine tunnel or other closed space, the experiments and numerical simulations were carried out. In this work, explosion characteristics and flame propagation characteristics of methane in pipeline and coal mine tunnel are studied by using an explosion test system, combined with FLACS software, under different vented conditions. The numerical simulation results of methane explosion are basically consistent with the physical experiment results, which indicates that the numerical simulation for methane explosion is reliable to be applied to the practice. The results show that explosion parameters (pressure, temperature and product concentration) of methane at five volume fractions have the same change trend. Nevertheless, the explosion intension of 10.0% methane is the largest and that of 9.5% methane is relatively weak, followed by 11.0% methane, 8.0% methane and 7.0% methane respectively. Under different vented conditions, the pressure and temperature of methane explosion are the highest in the pipeline without a vent, followed by the pipeline where ignition or vent position is in each end, and those are the lowest in the pipeline with ignition and vent at the same end. There is no significant effect on final product concentration of methane explosion under three vented conditions. For coal mine tunnel, it is indicated that the maximum explosion pressure at the airproof wall in return airway with the branch roadway at 50 m from goaf is significantly decreased while that in intake airway does not change overwhelmingly. In addition, when the branch roadway is longer or its section is larger, the peak pressure of airproof wall reduces slightly.

摘要

为研究甲烷-空气混合物在管道、煤矿巷道等封闭空间内的通风爆炸特性,进行了相关实验和数值模拟。本文利用爆炸实验系统,结合FLACS 软件,研究了不同泄爆条件下甲烷在管道和煤矿巷道中的爆炸特性和火焰传播特性。数值模拟与物理实验结果基本一致,说明甲烷爆炸的数值模拟是可靠的,且可应用于实际。研究结果表明,五种体积分数下甲烷的爆炸参数(压力、温度和产物浓度)变化趋势相同,但10.0%甲烷的爆炸强度最大,9.5%甲烷,11.0%甲烷,8.0%甲烷,7.0%甲烷的爆炸强度依次减弱。在不同泄爆条件下,甲烷爆炸压力和温度在无泄压条件的管道中最高,其次是在异端点火和泄压的管道,在同端点火和泄压的管道中最小。然而,三种泄爆条件对甲烷爆炸的最终产物浓度没有明显影响。对于煤矿巷道,距采空区50 m 处的支巷使回风巷道的最大爆炸压力明显减小,而进风回风巷道的最大爆炸压力变化不大。此外,当支巷道较长或支巷截面较大时,密闭墙处峰值压力略有降低。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LUO Z, SU B, LI Q, WANG T, KANG X, CHENG F, GAO S, LIU L. Micromechanism of the initiation of a multiple flammable gas explosion [J]. Energy & Fuels, 2019, 33: 7738–7748. DOI: https://doi.org/10.1021/acs.energyfuels.9b00480.

    Article  Google Scholar 

  2. SU B, LUO Z, WANG T, XIE C, CHENG F. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture [J]. Journal of Hazardous Materials, 2020. DOI: https://doi.org/10.1016/j.jhazmat.2020.123680.

  3. SU B, LUO Z, WANG T, YAN K, CHENG F, DENG J. Coupling analysis of the flame emission spectra and explosion characteristics of CH4/C2H6/Air mixtures [J]. Energy & Fuels, 2020, 34: 920–928. DOI: https://doi.org/10.1021/acs.energyfuels.9b03242.

    Article  Google Scholar 

  4. LUO Z, HAO Q, WANG T, LI R, CHENG F, DENG J. Experimental study on the deflagration characteristics of methane-ethane mixtures in a closed duct [J]. Fuel, 2020, 259: 1–10. DOI: https://doi.org/10.1016/j.fuel.2019.116295.

    Article  Google Scholar 

  5. SU B, LUO Z, WANG T, ZHANG J, CHENG F. Experimental and principal component analysis studies on minimum oxygen concentration of methane explosion [J]. International Journal of Hydrogen Energy, 2020, 45(21): 12225–12235. DOI: https://doi.org/10.1016/j.ijhydene.2020.02.133.

    Article  Google Scholar 

  6. LUO Z, LI D, SU B, ZHANG S, DENG J. On the time coupling analysis of explosion pressure and intermediate generation for multiple flammable gases [J]. Energy, 2020, 198: 1–10. DOI: https://doi.org/10.1016/j.energy.2020.117329.

    Article  Google Scholar 

  7. FERRARA G, BENEDETTO A, SALZANO E, SALZANO E, RUSSO G. CFD analysis of gas explosions vented through relief pipes [J]. Journal of Hazardous Materials, 2006, 137(2): 654–665. DOI: https://doi.org/10.1016/j.jhazmat.2006.03.037.

    Article  Google Scholar 

  8. PROUST C, LEPRETTE E. The dynamics of vented gas explosions [J]. Process Safety Progress, 2010, 29(3): 231–235. DOI: https://doi.org/10.1002/prs.10368.

    Article  Google Scholar 

  9. BAUWENS C R, CHAFFEE J, DOROFEEV S B. Vented explosion overpressures from combustion of hydrogen and hydrocarbon mixtures [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2329–2336. DOI: https://doi.org/10.1016/j.ijhydene.2010.04.005.

    Article  Google Scholar 

  10. WANG Z, PAN M, WANG S, SUN D. Effects on external pressures caused by vented explosion of methane-air mixtures in single and connected vessels [J]. Process Safety Progress, 2015, 33(4): 385–391. DOI: https://doi.org/10.1002/prs.11668.

    Article  Google Scholar 

  11. GUO J, LI Q, CHEN D, HU K, SHAO K, GUO C, WANG C. Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel [J]. International Journal of Hydrogen Energy, 2015, 40(19): 6478–6486. DOI: https://doi.org/10.1016/j.ijhydene.2015.03.059.

    Article  Google Scholar 

  12. KUNDU S, ZANGANEH J, ESCHEBACH D, MAHINPEY N, MOGHTADERI B. Explosion characteristics of methane-air mixtures in a spherical vessel connected with a duct [J]. Process Safety & Environmental Protection, 2017, 111: 85–93. DOI: https://doi.org/10.1016/j.psep.2017.06.014.

    Article  Google Scholar 

  13. CAO Y, LI B, GAO K. Pressure characteristics during vented explosion of ethylene-air mixtures in a square vessel [J]. Energy, 2018, 151: 26–32. DOI: https://doi.org/10.1016/j.energy.2018.03.012.

    Article  Google Scholar 

  14. SUN S, QIU Y, XING H, WANG M. Effects of concentration and initial turbulence on the vented explosion characteristics of methane-air mixtures [J]. Fuel, 2020, 267: 1–9. DOI: https://doi.org/10.1016/j.fuel.2020.117103.

    Google Scholar 

  15. MOKHTAR K, KASMANI R, HASSAN C, HAMID M, EMAMI S, NOR M. Reliability and applicability of empirical equations in predicting the reduced explosion pressure of vented gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 1–10. DOI: https://doi.org/10.1016/j.jlp.2019.104023.

    Google Scholar 

  16. ZHANG Y, JIAO F, HUANG Q, CAO W, SHI L, ZHAO M, YU C, NIE B, CAO X. Experimental and numerical studies on the closed and vented explosion behaviors of premixed methane-hydrogen/air mixtures [J]. Applied Thermal Engineering, 2019, 159: 1–11. DOI: https://doi.org/10.1016/j.applthermaleng.2019.113907.

    Google Scholar 

  17. WAN S, YU M, ZHENG K, WANG C, YUAN Z, YANG X. Effect of side vent size on a methane/air explosion in an end-vented duct containing an obstacle [J]. Experimental Thermal and Fluid Science, 2019, 101: 141–150. DOI:https://doi.org/10.1016/j.expthermflusci.2018.10.004.

    Article  Google Scholar 

  18. PHYLAKTOU H, ANDREWS G E. Gas explosions in long closed vessels [J]. Combustion Science & Technology, 1991, 77(1–3): 27–39. DOI: https://doi.org/10.1080/00102209108951718.

    Article  Google Scholar 

  19. INDRACKI J, KOBIERA A, RARATA G, WOLANSKI P. Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4–6): 551–561. DOI: https://doi.org/10.1016/j.jlp.2007.05.010.

    Article  Google Scholar 

  20. WILLACY S K, PHYLAKTOU H N, ANDREWS G E, FERRARA G. Stratified propane-air explosions in a duct vented geometry: Effect of concentration, ignition and injection position [J]. Process Safety & Environmental Protection, 2007, 85(2): 153–161. DOI: https://doi.org/10.1205/psep06020.

    Article  Google Scholar 

  21. GUO J, SUN X, RUI S, CAO Y, HU K, WANG C. Effect of ignition position on vented hydrogen-air explosions [J]. International Journal of Hydrogen Energy, 2016, 40(45): 15780–15788. DOI: https://doi.org/10.1016/j.ijhydene.2015.09.038.

    Article  Google Scholar 

  22. TOMLIN G, JOHNSON D M, CRONIN P, PHYLAKTOU H, ANDREWS G. The effect of vent size and congestion in large-scale vented natural gas/air explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 169–181. DOI: https://doi.org/10.1016/j.jlp.2015.04.014.

    Article  Google Scholar 

  23. QI S, DU Y, WANG S, ZHOU Y, LI G. The effect of vent size and concentration in vented gasoline-air explosions [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 88–94. DOI: https://doi.org/10.1016/j.jlp.2016.08.005.

    Article  Google Scholar 

  24. BATRAEV I S, VASIL’EV A A, UL’YANITSKII V Y, SHTERTSER A A, RYBIN D K. Investigation of gas detonation in over-rich mixtures of hydrocarbons with oxygen [J]. Combustion Explosion & Shock Waves, 2018, 54(2): 207–215. DOI: https://doi.org/10.1134/S0010508218020107.

    Article  Google Scholar 

  25. ZHANG K, WANG Z, CHEN Z, JIANG F, WANG S. Influential factors of vented explosion position on maximum explosion overpressure of methane-air mixture explosion in single spherical container and linked vessels [J]. Process Safety Progress, 2018, 37(2): 248–255. DOI: https://doi.org/10.1002/prs.11940.

    Article  Google Scholar 

  26. SINHA A, WEN J. A simple model for calculating peak pressure in vented explosions of hydrogen and hydrocarbons [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22719–22732. DOI: https://doi.org/10.1016/j.ijhydene.2019.02.213.

    Article  Google Scholar 

  27. NIE B, HE X, WANG C, LU H, XUE F. Computational method of the propagation velocity of methane explosion flame based on correlation coefficient of images [J]. Combustion Science and Technology, 2015. DOI: https://doi.org/10.1080/00102202.2015.1019621.

  28. AMYOTTE P R, PATIL S, PEGG M J. Confined and vented ethylene/air deflagrations at initially elevated pressures and turbulence levels [J]. Process Safety & Environmental Protection, 2002, 80(2): 71–77. DOI: https://doi.org/10.1205/095758202753553185.

    Article  Google Scholar 

  29. ZHANG K, WANG Z, GONG J, LIU M, DOU Z, JIANG J. Experimental study of effects of ignition position, initial pressure and pipe length on H2-air explosion in linked vessels [J]. Journal of Loss Prevention in the Process Industries, 2017, 50: 1–6. DOI: https://doi.org/10.1016/j.jlp.2017.09.0.

    Article  Google Scholar 

  30. JIANG B, LIN B, SHI S, ZHU C, LIU Q, ZHAI C. A numerical simulation of the influence initial temperature has on the propagation characteristics of, and safe distance from, a gas explosion [J]. International Journal of Mining Science and Technology, 2012, 22(3): 307–310. DOI: https://doi.org/10.1016/j.ijmst.2012.04.004.

    Article  Google Scholar 

  31. WEI H, XU Z, ZHOU L, GAO D, ZHAO J. Effect of initial pressure on flame-shock interaction of hydrogen-air premixed flames [J]. International Journal of Hydrogen Energy, 2017, 42(17): 12657–12668. DOI: https://doi.org/10.1016/j.ijhydene.2017.03.099.

    Article  Google Scholar 

  32. WEN X, YU M, JI W, YUE M, CHEN J. Methane-air explosion characteristics with different obstacle configurations [J]. International Journal of Mining Science and Technology, 2015, 25(2): 213–218. DOI: https://doi.org/10.1016/j.ijmst.2015.02.008.

    Article  Google Scholar 

  33. LI H, GUO J, TANG Z, LI J, HUANG P, ZHANG S. Effects of ignition, obstacle, and side vent locations on vented hydrogen-air explosions in an obstructed duct [J]. International Journal of Hydrogen Energy, 2019, 44(36): 20598–20605. DOI: https://doi.org/10.1016/j.ijhydene.2019.06.029.

    Article  Google Scholar 

  34. VYAZMINA E, JALLAIS S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: Effects of concentration, obstruction vent area and ignition position [J]. International Journal of Hydrogen Energy, 2016, 41(33): 15101–15109. DOI: https://doi.org/10.1016/j.ijhydene.2016.05.189.

    Article  Google Scholar 

  35. BAO Q, FANG Q, ZHANG Y, CHEN L, YANG S, LI Z. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: https://doi.org/10.1016/j.fuel.2016.01.084.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-min Luo  (罗振敏).

Additional information

Foundation item: Project(51674193) supported by the National Natural Science Foundation of China; Project(2019-JLM-9) supported by the Natural Science Foundation of Shaanxi Province, China; Project(2019-M-663780) supported by the Postdoctoral Science Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, B., Luo, Zm., Wang, T. et al. Experimental and numerical evaluations on characteristics of vented methane explosion. J. Cent. South Univ. 27, 2382–2393 (2020). https://doi.org/10.1007/s11771-020-4456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4456-1

Key words

关键词

Navigation