Skip to main content
Log in

Effect of equivalence ratio on diesel direct injection spark ignition combustion

当量比对柴油直喷点燃燃烧的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Aviation heavy-fuel spark ignition (SI) piston engines have been paid more and more attention in the area of small aviation. Aviation heavy-fuel refers to aviation kerosene or light diesel fuel, which is safer to use and store compared to gasoline fuel. And diesel fuel is more suitable for small aviation application on land. In this study, numerical simulation was performed to evaluate the possibility of switching from gasoline direct injection spark ignition (DISI) to diesel DISI combustion. Diesel was injected into the cylinder by original DI system and ignited by spark. In the simulation, computational models were calibrated by test data from a DI engine. Based on the calibrated models, furthermore, the behavior of diesel DISI combustion was investigated. The results indicate that diesel DISI combustion is slower compared to gasoline, and the knock tendency of diesel in SI combustion is higher. For a diesel/air mixture with an equivalence ratio of 0.6 to 1.4, higher combustion pressure and faster burning rate occur when the equivalence ratios are 1.2 and 1.0, but the latter has a higher possibility of knock. In summary, the SI combustion of diesel fuel with a rich mixture can achieve better combustion performance in the engine.

摘要

在小型航空领域航空重油点燃式活塞发动机受到越来越多的关注。航空重油指的是航空煤油或 者轻质柴油,相比汽油燃料在使用和储存上都更安全。而柴油燃料更适合应用在陆地上的小型航空发 动机中。本文采用数值模拟研究去评估汽油直喷点燃转换到柴油直喷点燃的可能性。其中柴油采用原 有的汽油直喷系统直接喷入气缸并通过火花点燃。在模拟中,计算模型通过一台汽油直喷发动机的实 验数据进行标定,并验证了模型的有效性。进而,在验证模型的基础上,研究了柴油直喷点燃燃烧特 性。研究结果表明,柴油直喷点燃燃烧过程比汽油慢,并且柴油在点燃燃烧中的爆震倾向更高。对当 量比从0.6 到1.4 的柴油/空气混合气,当量比为1.2 和1.0 时的燃烧压力更高,燃烧速率更快,但当量 比为1.0 的爆震可能性更高。综合来看,柴油燃料在发动机中的点燃燃烧采用浓混合气能获得更好的 燃烧性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AADI:

Air-assist direct injection

BDC:

Bottom dead center

CFD:

Computational fluid dynamics

CFM:

Coherent flame model

CI:

Compression ignition

DI:

Direct injection

DISI:

Direct injection spark ignition

DNS:

Direct numerical simulation

ECFM:

Extended coherent flame model

ECU:

Electronic control unit

EGR:

Exhaust gas recirculation

EVO:

Exhaust valve open

HC:

Hydrocarbon

IC:

Internal combustion

IVC:

Intake valve closure

IVO:

Intake valve open

K :

Knock factor

LES:

Large eddy simulation

NS:

Navier-Stokes

RANS:

Reynolds averaged Navier-Stokes

RON:

Research octane number

SI:

Spark ignition

SMD:

Sauter mean diameter

TDC:

Top dead center

UAVs:

Unmanned aerial vehicles

References

  1. CHEN Wei, ZHOU Jian-hao, HE Xiao-ming. Recent progress in heavy fuel aviation piston engine [J]. Transaction of Nanjing University of Aeronautics and Astronautics, 2015, 32(1): 22–28. DOI: https://doi.org/10.16356/j.1005-1120.2015.01.022.

    Google Scholar 

  2. WADUMESTHRIGE K, JOHNSON N, WINSTON-GALANT M, ZENG S, SATTLER E, SALLEY S, NG K. Performance and durability of a generator set CI engine using synthetic and petroleum based fuels for military applications [J]. Applied Energy, 2010, 87(5): 1581–1590. DOI: https://doi.org/10.1016/j.apenergy.2009.09.015.

    Article  Google Scholar 

  3. CHI La, MURPHY P, CAKEBREAD S. Benchmarking a 2-Stroke spark ignition heavy fuel engine [C]// SAE World Congress (SAE 2012). Detroit, USA: SAE Technical Paper, 2012: 2012-01-0397. DOI: https://doi.org/10.4271/2012-01-0397.

  4. ARKOUDEAS P, KALLIGEROS S, ZANNIKOS F, ANASTOPOULOS G, KARONIS D, KORRES D, LOIS E. Study of using JP-8 aviation fuel and biodiesel in CI engines [J]. Energy Convers Manage, 2003, 44(7): 1013–1025. DOI: https://doi.org/10.1016/S0196-8904(02)00112-7.

    Article  Google Scholar 

  5. QIU Jun, ZHOU Ming, PAN Chun-yu, LI Fang-fang. Simulation of fuel spray and combustion of compression ignition heavy-oil engine [C]// AIAA Modeling and Simulation Technologies Conference (AIAA AVIATION 2016). Washington DC, USA: AIAA, 2016: 2016–4417. DOI: https://doi.org/10.2514/6.2016-4417.

    Google Scholar 

  6. FERNANDES G, FUSCHETTO J, FILIPI Z, ASSANIS D, MCKEE H. Impact of military JP-8 fuel on heavy duty diesel engine performance and emissions [J]. Proc Inst Mech Eng Part D:J Automob Eng, 2007, 221(8): 957–970. DOI: https://doi.org/10.1243/09544070JAUTO211.

    Article  Google Scholar 

  7. GOWDAGIRI S, CESARI X M, HUANG Ming-di, OEHLSCHLAEGER A. A diesel engine study of conventional and alternative diesel and jet fuels: Ignition and emissions characteristics [J]. Fuel, 2014, 136(10): 253–260. DOI: https://doi.org/10.1016/j.fuel.2014.07.056.

    Article  Google Scholar 

  8. CHEN Long-fei, DING Shi-run, LIU Hao-ye, LU Yi-ji, LI Yan-fei, ROSKILLY A P. Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine [J]. Applied Energy, 2017, 203: 91–100. DOI: https://doi.org/10.1016/j.apenergy.2017.06.036.

    Article  Google Scholar 

  9. YAN Ying-wen, LIU Yu-chen, FANG Wen, LIU Yun-peng, LI Jing-hua. A simplified chemical reaction mechanism for two-component RP-3 kerosene surrogate fuel and its verification [J]. Fuel, 2018, 227: 127–134. DOI: https://doi.org/10.1016/j.fuel.2018.04.092.

    Article  Google Scholar 

  10. ZHAO Guo-zhu, SONG Wen-yan, ZHANG Ruo-ling. Effect of pressure on thermal cracking of china RP-3 aviation kerosene under supercritical conditions [J]. Int J Heat Mass Transf, 2015, 84: 625–632. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.059.

    Article  Google Scholar 

  11. HE Ting-pu, CHEN Zheng, ZHU Li-jing, ZHANG Quan-chang. The influence of alcohol additives and EGR on the combustion and emission characteristics of diesel engine under high-load condition [J]. Applied Thermal Engineering, 2018, 140: 363–372. DOI: https://doi.org/10.1016/j.applthermaleng.2018.05.064.

    Article  Google Scholar 

  12. SUHY P J, EVERS L W, MORGAN E J, WANK J E. The feasibility of a kerosene fueled spark ignited two-stroke engine [C]// SAE World Congress (SAE 1991). Detroit, USA: SAE Technical Paper, 1991: 911846. DOI: https://doi.org/10.4271/911846.

  13. FALKOWSKI D, ABATA D, CHO P. The performance of a spark-ignited stratified-charge two stroke engine operating on a kerosene based aviation fuel [C]// SAE World Congress (SAE 1997). Detroit, USA: SAE Technical Paper, 1997: 972737. DOI: https://doi.org/10.4271/972737.

  14. GROENEWEGEN J J, LITKE P J, WILSON C W. The performance and emissions effects of utilizing heavy fuels and biodiesel in a small spark ignition internal combustion engine [C]// 49th AIAA Aerospace Sciences Meeting (AIAA 2011). Orlando, USA: AIAA, 2011: 2011–695. DOI: https://doi.org/10.2514/6.2011-695.

    Google Scholar 

  15. HOUSTON R, CATHCART G. Combustion and emissions characteristics of Orbital’s combustion process applied to multi-cylinder automotive direct injected 4-stroke engines. [C]// SAE Technical Paper 980153. 1998. DOI: https://doi.org/10.4271/980153.

  16. CATHCART G, DICKSON G, AHERN S. The application of air-assist direct injection for spark-ignited heavy fuel 2-Stroke and 4-Stroke engines [C]// SAE World Congress (SAE 2005). Detroit, USA: SAE Technical Paper, 2005: 2005-32-0065. DOI: https://doi.org/10.4271/2005-32-0065.

  17. HU Chun-ming, GU Jun, ZHOU Hao. Combustion characteristics for direct injection piston aviation engine [J]. Journal of Aerospace Power, 2015, 30(10): 2368–2375. DOI: https://doi.org/10.13224/j.cnki.jasp.2015.10.010. (in Chinese)

    Google Scholar 

  18. HU Chun-ming, WANG Shu-dian, BI Yan-fei, ZHONG Wei-jun. Combustion characteristics of direct injection piston aviation kerosene engine [J]. Journal of Aerospace Power, 2017, 32(5): 1035–1042. DOI: https://doi.org/10.13224/j.cnki.jasp.2017.05.002. (in Chinese)

    Google Scholar 

  19. BEI Tai-xue, WEI Min-xiang, LIU Rui, JI Hao-cheng, CHANG Cheng. Effects of injection parameters on performance at low loads of a spark-ignited direct injection heavy-oil engine [J]. China Mechanical Engineering, 2016, 27(13): 1834–1839. DOI: https://doi.org/10.3969/j.issn.1004-132X.2016.13.025. (in Chinese)

    Google Scholar 

  20. LIU Rui, WEI Min-xiang, YANG Hai-qing. Cold start control strategy for a two-stroke spark ignition diesel-fuelled engine with air-assisted direct injection [J]. Applied Thermal Engineering, 2016, 108: 414–426. DOI: https://doi.org/10.1016/j.applthermaleng.2016.07.148.

    Article  Google Scholar 

  21. SINGH R, MCCHESNEY R. Development of multi-fuel spark ignition engine [C]// SAE World Congress (SAE 2004). Detroit, USA: SAE Technical Paper, 2004: 2004-32-0038. DOI: https://doi.org/10.4271/2004-32-0038.

  22. WANG Zhi, LIU Hui, REITZ R D. Knocking combustion in spark-ignition engines [J]. Progress in Energy and Combustion Science, 2017, 61: 78–112. DOI: https://doi.org/10.1016/j.pecs.2017.03.004.

    Article  Google Scholar 

  23. DAGAUT P, CATHONNET M. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling [J]. Progress in Energy and Combustion Science, 2006, 32(1): 48–92. DOI: https://doi.org/10.1016/j.pecs.2005.10.003.

    Article  Google Scholar 

  24. WON S H, WINDOM B, JIANG Bo, JU Yi-guang. The role of low temperature fuel chemistry on turbulent flame propagation [J]. Combustion and Flame, 2014, 161: 475–483. DOI: https://doi.org/10.1016/j.combustflame.2013.08.027.

    Article  Google Scholar 

  25. LI Jin, ZHOU Lei, ZHAO Zhen-feng, WANG Xiao-lin, ZHANG Fu-jun. Research on knocking characteristics of kerosene spark-ignition engine for unmanned aerial vehicle (UAV) by numerical simulation [J]. Thermal Science and Engineering Progress, 2019, 9: 1–10. DOI: https://doi.org/10.1016/j.tsep.2018.10.014.

    Article  Google Scholar 

  26. WANG Chen-yao, ZANG Fu-jun, WANG En-hua, YU Chun-cun, GAO Hong-li, LIU Bo-lan. Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection [J]. Applied Energy, 2019, 242: 248–259. DOI: https://doi.org/10.1016/j.apenergy.2019.03.123.

    Article  Google Scholar 

  27. NING Le, DUAN Qi-meng, WEI Yu-hao, ZHANG Xin, YANG Bo, ZENG Ke. Experimental investigation on combustion and emissions of a two-stroke DISI engine fueled with aviation kerosene at various compression ratios [J]. Fuel, 2019, 259: 116224. DOI: https://doi.org/10.1016/j.fuel.2019.116224.

    Article  Google Scholar 

  28. NING Le, DUAN Qi-meng, WEI Yu-hao, ZHANG Xin, YU Kang, YANG Bo, ZENG Ke. Effects of injection timing and compression ratio on the combustion performance and emissions of a two-stroke DISI engine fuelled with aviation kerosene [J]. Applied Thermal Engineering, 2019, 161: 114124. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114124.

    Article  Google Scholar 

  29. HEYWOOD J B. Internal combustion engines fundamentals [M]. New York, USA, 1988.

  30. ZHEN Xu-dong, LIU Da-ming, WANG Yang. The knock study of methanol fuel based on multi-dimensional simulation analysis [J]. Energy, 2017, 122: 552–559. DOI: https://doi.org/10.1016/j.energy.2017.01.106.

    Article  Google Scholar 

  31. AVL GmbH. Fire version 2013 combustion module manual [M]. Graz, Austria: AVL, 2012.

    Google Scholar 

  32. SHARMA T K, PRASAD RAO G A, MURTHY K M. Numerical investigations on HCCI engine with increased induction induced swirl and engine speed [J]. Journal of Central South University, 2015, 22(10): 3837–3848. DOI: https://doi.org/10.1007/s11771-015-2928-5.

    Article  Google Scholar 

  33. ZHEN Xu-dong, WANG Yang, XU Shuai-qing, ZHU Yong-sheng. Numerical analysis on knock for a high compression ratio spark-ignition methanol engine [J]. Fuel, 2013, 103: 892–898. DOI: https://doi.org/10.1016/j.fuel.2012.10.023.

    Article  Google Scholar 

  34. SAZHIN S S, SAZHINA E M, HEIKAL M R, MAROONEY C, MIKHALOVSK S V. The shell autoignition model: a new mathematical formulation [J]. Combustion and Flame, 1999, 117: 529–540. DOI: https://doi.org/10.1016/S0010-2180(98)00072-8.

    Article  Google Scholar 

  35. ZHEN Xu-dong, WANG Yang, XU Shuai-qing, ZHU Yong-sheng, TAO Cheng-jun, XU Tao, SONG Ming-zhi. The engine knock analysis-An overview [J]. Applied Energy, 2012, 92: 628–636. DOI: https://doi.org/10.1016/j.apenergy.2011.11.079.

    Article  Google Scholar 

  36. BAI Yun-long, WANG Zhi, WANG Jian-xin. Simulation research on knocking suppression using stratified stoichiometric mixture in a GDI engine [J]. Transactions of CSICE, 2010, 28(5): 393–398. DOI: https://doi.org/10.16236/j.cnki.nrjxb.2010.05.004. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen  (陈征).

Additional information

Foundation item: Project(2018JJ2041) supported by the Science and Technology Project in Hunan Province, China; Project(szjj2019-008) supported by the Open Research Subject of Key Laboratory of Fluid and Power Machinery, Ministry of Education, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Qin, T., He, Tp. et al. Effect of equivalence ratio on diesel direct injection spark ignition combustion. J. Cent. South Univ. 27, 2338–2352 (2020). https://doi.org/10.1007/s11771-020-4453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4453-4

Key words

关键词

Navigation