Skip to main content
Log in

Heat transfer simulation of annular elliptical fin-and-tube heat exchanger by transition SST model

过渡SST 模型模拟椭圆环形翅片管换热器的传热仿真

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail. Transition SST model was utilized to simulate turbulent flow. Effects of air velocities, horizontal to vertical fin diameter ratios, and fin densities were examined in detail. The simulations indicate superior performance of elliptical fin layout. It was shown that pressure drop of annular elliptical fin can be only one half of that of a circular annular fin while containing comparable heat transfer performance. The vertical elliptical annular fin may even contain a higher heat transfer performance over circular fin. Correlations are proposed to estimate the Nu number and pressure drop based on the annular circular fin. The maximum deviations between the proposed correlations and simulations regarding pressure drop and heat transfer coefficient are 5.6% and 3.2%, respectively. For further elaboration of the superiority of the elliptical layout from the second law perspective, normalized entropy generation was also studied. In all cases, the entropy generation rate in circular fin was higher than that of an elliptical fin.

摘要

本文对椭圆环形翅片管换热器的热流体特性进行了数值模拟研究。采用过渡SST 模型对湍流进 行了仿真模拟,研究了气流速度、水平/垂直方向翅片直径比以及翅片密度的影响。仿真结果表明,椭 圆环形翅片具有优越的性能。在具有相同传热性能的情况下,环形椭圆翅片的压降仅为圆环形翅片的 一半。竖直椭圆环形翅片可能含有比圆环形翅片具有更优的热传导性能。利用相关性系数估算环形翅 片的Nu 数和压降,相关性系数和模拟结果在压降和传热系数上的最大偏差分别为5.6%和3.2%。为 从第二定律的角度进一步阐述椭圆环形翅片的优越性,对归一化熵产生进行了研究。在所有情况下, 圆环形翅片的熵产生率均高于椭圆环形翅片的。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A=A f +A t :

Fin tube heat transfer area per unit length of tube (m2)

A :

Transition SST model constant

A f :

Fin surface area per unit length of fin tube (m2)

A ff :

Minimum free flow area of finned tube per unit length (m2)

A t :

Tube heat transfer area per unit length of fin tube (m2)

A′ :

Heat transfer area per unit length of finned tube (m2)

a :

Transition SST model constant

d :

Tube outer diameter (m)

:

Total enthalpy of airflow rate (W)

h :

Average convective heat transfer coefficient (W/(m2·K))

h f :

Fin height (mm)

k :

Air thermal conductivity (W/(m·K))

k t :

Turbulent thermal conductivity (W/(m·K))

L 1 :

Larger fin length (m)

L 2 :

Smaller fin length (m)

Nu=hd/k :

Nusselt number

n :

Number of tube rows

P :

Pressure (Pa)

:

Heat transfer between fin-tube and air (W)

q :

Heat transfer between fin-tube and air per unit air mass flow rate (J/kg)

r h :

Horizontal fin radius (m)

r v :

Vertical fin radius (m)

r 1 :

Larger fin radius (m)

r 2 :

Smaller fin radius (m)

S :

Absolute value of the shear strain rate (s−1)

s :

Fin spacing (m)

s gen :

Entropy generation (J/(kg·K))

T :

Average temperature (K)

T w :

Tube surface temperature (K)

t f :

Fin thickness (m)

U in :

Air inlet velocity (m/s)

u max :

Maximum average velocity inside the tube bundle (m/s)

β1, β2 :

Transition SST model constants

ΔP :

Tube bundle pressure drop (Pa)

ΔS :

Entropy change (J/(kg·K))

η :

Fin efficiency

θ :

Log mean temperature difference (K)

k :

Turbulent kinetic energy (m2·s−2)

μ :

Viscosity (Pa·s)

ρ :

Density of air (kg/m3)

ω :

Specific rate of turbulence dissipation (s−1)

Π :

Intermittency adjunct function

References

  1. NI M L, CHEN Y P, DONG C, WU J F. Numerical simulation of heat transfer and flow of cooling air in triangular wavy fin channels [J]. Journal of Central South University, 2014, 21(7): 2759–2765.

    Article  Google Scholar 

  2. GHASEMI S, VALIPOUR P, HATAMI M, GANJI D. Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method [J]. Journal of Central South University, 2014, 21(12): 4592–4598.

    Article  Google Scholar 

  3. MOSAYEBIDORCHEH S, RAHIMI-GORJI M, GANJI D, MOAYEBIDORCHEH T, POURMEHRAN O, BIGLARIAN M. Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM [J]. Journal of Central South University, 2017, 24(3): 675–682.

    Article  Google Scholar 

  4. SHAH R K, SEKULIC D P. Fundamentals of heat exchanger design [M]. John Wiley & Sons, 2003.

  5. NEAL S, HITCHCOCK J. A study of the heat transfer processes in banks of finned tubes in cross flow, using a large scale model technique [C]// Proceedings of the Third International Heat Transfer Conference. Chicago, Illinois, 1966.

  6. LEGKIY V. Investigation of local heat transfer in a tube with annular fins in transverse air flow [J]. Heat Tranfer-Soviet Research, 1974, 6: 101–107.

    Google Scholar 

  7. STASIULEVICIUS J, SKRINSKA A, ZUKAUSKAS A. Heat transfer of finned tube bundles in crossflow [J]. International Journal of Heat and Fluid Flow, 1998, 9(3): 347–348.

    Google Scholar 

  8. GOROBETS V. Coupled convective heat transfer from annular fins in transverse flow [J]. Journal Of Applied Mechanics And Technical Physics, 1993, 34: 392–398.

    Article  Google Scholar 

  9. XI G, TORIKOSHI K. Computation and visualization of flow and heat transfer in finned tube heat exchangers [C]// The 1996 4th International Symposium on Heat Transfer, ISHT, Beijing, China, 1996: 632–637.

    Google Scholar 

  10. HASHIZUME K, MORIKAWA R, KOYAMA T, MATSUE T. Fin efficiency of serrated fins [J]. Heat Transfer Engineering, 2002, 23: 6–14.

    Article  Google Scholar 

  11. YAKAR G, KARABACAK R. Investigation of thermal performance of perforated finned heat exchangers [J]. Experimental Heat Transfer, 2015, 28: 354–365.

    Article  Google Scholar 

  12. BUYRUK E, KARABULUT K. Enhancement of heat transfer for plate fin heat exchangers considering the effects of fin arrangements [J]. Heat Transfer Engineering, 2018, 39: 1392–1404.

    Article  Google Scholar 

  13. VÄLIKANGAS T, KARVINEN R. Conjugated heat transfer simulation of a fin-and-tube heat exchanger [J]. Heat Transfer Engineering, 2018, 39: 1192–1200.

    Article  Google Scholar 

  14. NEMATI H, MORADAGHAY M. Parametric study of natural convection over horizontal annular finned tube [J]. Journal of Central South University, 2019, 26(8): 2077–2087.

    Article  Google Scholar 

  15. JANG J Y, LAI J T, LIU L C. The thermal-hydraulic characteristics of staggered circular finned-tube heat exchangers under dry and dehumidifying conditions [J]. Int J Heat Mass Tran, 1998, 41: 3321–3337.

    Article  Google Scholar 

  16. MON M S, GROSS U. Numerical study of fin-spacing effects in annular-finned tube heat exchangers [J]. Int J Heat Mass Tran, 2004, 47: 1953–1964.

    Article  Google Scholar 

  17. NEMATI H, MOGHIMI M. Numerical study of flow over annular-finned tube heat exchangers by different turbulent models [J]. CFD Letters, 2014, 6: 101–112.

    Google Scholar 

  18. BOŠNJAKOVIĆ M, ČIKIĆ A, MUHIČ S, STOJKOV M. Development of a new type of finned heat exchanger [J]. Tehnički Vjesnik-Technical Gazette, 2017, 24: 1785–1796.

    Google Scholar 

  19. MORALES-FUENTES A, LOREDO-SÁENZ Y. Identifying the geometry parameters and fin type that lead to enhanced performance in tube-and-fin geometries [J]. Applied Thermal Engineering, 2018, 131: 793–805.

    Article  Google Scholar 

  20. BENMACHICHE A H, TAHROUR F, AISSAOUI F, AKSAS M, BOUGRIOU C. Comparison of thermal and hydraulic performances of eccentric and concentric annular-fins of heat exchanger tubes [J]. Heat and Mass Transfer, 2017, 53: 2461–2471.

    Article  Google Scholar 

  21. TAHROUR F, BENMACHICHE A H, AKSAS M, BOUGRIOU C. 3-D numerical study and comparison of eccentric and concentric annular-finned tube heat exchangers [J]. J Eng Sci Technol, 2015, 10: 1508–1524.

    Google Scholar 

  22. NEMATI H, MOGHIMI M, SAPIN P, MARKIDES C. Shape optimisation of air-cooled finned-tube heat exchangers [J]. International Journal of Thermal Sciences, 2020, 150: 106233.

    Article  Google Scholar 

  23. JANG J Y, YANG J Y. Experimental and 3-D numerical analysis of the thermal-hydraulic characteristics of elliptic finned-tube heat exchangers [J]. Heat Transfer Engineering, 1998, 19: 55–67.

    Article  Google Scholar 

  24. MATOS R, VARGAS J, LAURSEN T, BEJAN A. Optimally staggered finned circular and elliptic tubes in forced convection [J]. Int J Heat Mass Tran, 2004, 47: 1347–1359.

    Article  Google Scholar 

  25. KHAN W A, CULHAM R J, YOVANOVICH M M. Fluid flow around and heat transfer from elliptical cylinders: analytical approach [J]. Journal of thermophysics and Heat Transfer, 2005, 19: 178–185.

    Article  Google Scholar 

  26. SHEARD G J. Cylinders with elliptic cross-section: wake stability with variation in angle of incidence [C]// Proceedings of the IUTAM Symposium on Unsteady Separated flows and Their Control. Citeseer, 2007.

  27. ALAWADHI E M. Laminar forced convection flow past an in-line elliptical cylinder array with inclination [J]. Journal of Heat Transfer, 2010, 132: 071701.

    Article  Google Scholar 

  28. KUNDU B, DAS P. Performance analysis and optimization of elliptic fins circumscribing a circular tube [J]. International Journal of Heat And Mass Transfer, 2007, 50: 173–180.

    Article  Google Scholar 

  29. NEMATI H, SAMIVAND S. Simple correlation to evaluate efficiency of annular elliptical fin circumscribing circular tube [J]. Arabian Journal for Science and Engineering, 2014, 39: 9181–9186.

    Article  Google Scholar 

  30. NEMATI H, SAMIVAND S. Numerical study of flow over annular elliptical finned tube heat exchangers [J]. Arabian Journal for Science and Engineering, 2016, 41: 4625–4634.

    Article  Google Scholar 

  31. ZHUKAUSKAS A. Investigation of heat-transfer in different arrangements of heat-exchanger surfaces [J]. Thermal Engineering, 1974, 21: 40–46.

    Google Scholar 

  32. JACOBI A M, SHAH R K. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms [J]. Heat Transfer Engineering, 1998, 19: 29–41.

    Article  Google Scholar 

  33. MENTER F, LANGTRY R, VÖLKER S. Transition modelling for general purpose CFD codes [J]. Flow, Turbulence and Combustion, 2006, 77: 277–303.

    Article  Google Scholar 

  34. MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32: 1598–1605.

    Article  Google Scholar 

  35. ANSYS/Fluent user guide version 18.1 [R]. ANSYS Incorporated, 2018.

  36. OSLEY W G, DROEGEMUELLER P, ELLERBY P, GIBBARD I. Computational fluid dynamics investigation of air cooled heat exchangers [J]. Chemical Engineering Transactions, 2014, 39: 1351–1356.

    Google Scholar 

  37. BRIGGS D E, YOUNG E H. Convection heat transfer and pressure drop of air flowing across triangular pitch banks of finned tubes [J]. Chemical Engineering Progress Symposium Series, 1963, 59(41): 1–10.

    Google Scholar 

  38. GIANOLIO E, CUTI F. Heat transfer coefficients and pressure drops for air coolers with different numbers of rows under induced and forced draft [J]. Heat Transfer Engineering, 1981, 3: 38–48.

    Article  Google Scholar 

  39. VEREIN DEUTSCHER INGENIEUREV G V U C. VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang [M]. Springer Berlin Heidelberg, 2002.

    Book  Google Scholar 

  40. WARD D, YOUNG E. Heat transfer and pressure drop of air in forced convection across triangular pitch banks of finned tubes [J]. Chemical Engineering Progress, 1959, 55(29): 37–44.

    Google Scholar 

  41. ROBINSON K K, BRIGGS D E. Pressure drop of air flowing across triangular pitch banks of finned tubes [J]. Chemical Engineering Progress Symposium Series, 1966: 177–184.

Download references

Acknowledgments

The last author (Chi-chuan WANG) would like to acknowledge the financial support from Ministry of Science and Technology, Taiwan, China under contract No. 107-2221-E-009-143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nemati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, H., Rahimzadeh, A.R. & Wang, Cc. Heat transfer simulation of annular elliptical fin-and-tube heat exchanger by transition SST model. J. Cent. South Univ. 27, 2324–2337 (2020). https://doi.org/10.1007/s11771-020-4452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4452-5

Key words

关键词

Navigation