Skip to main content

A model to determining the remaining useful life of rotating equipment, based on a new approach to determining state of degradation

基于退化状态确定旋转设备剩余使用寿命的模型

Abstract

Condition assessment is one of the most significant techniques of the equipment’s health management. Also, in PHM methodology cycle, which is a developed form of CBM, condition assessment is the most important step of this cycle. In this paper, the remaining useful life of the equipment is calculated using the combination of sensor information, determination of degradation state and forecasting the proposed health index. The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method. Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching (ARMRS) method, final health state is determined and the remaining useful life (RUL) is estimated. In order to evaluate the model, sensor data provided by FEMTO-ST Institute have been used.

摘要

状态评估是设备健康管理的重要技术之一。PHM 方法周期是CBM 的一种发展形式,而条件评估是 其中最重要的步骤。本文结合传感器信息、降解状态的确定和健康指标的预测,计算了设备的剩余使用寿 命。利用一种确定Demster-Shafer 组合规则概率的新方法和模糊c 均值聚类方法对传感器信息进行组合。 利用自回归马尔可夫状态转换(ARMR)方法对提取的基于振动的健康指数进行模拟和预测,确定最终的健 康状态,估计剩余寿命(RUL)。为了对模型进行评价,使用了FEMTO-ST 研究所提供的传感器数据。

This is a preview of subscription content, access via your institution.

References

  1. LEE J, WU F J, ZHAO W, GHAFFARI M, LIAO L X, SIEGEL D. Prognostics and health management design for rotary machinery systems: Reviews, methodology and applications [J]. Mechanical Systems and Signal Processing, 2014, 42(1, 2): 314–334. DOI: https://doi.org/10.1016/j.ymssp.2013.06.004.

    Google Scholar 

  2. TAHAN M, TSOUTSANIS E, MUHAMMAD M, ABDUL KARIM Z A. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review [J]. Applied Energy, 2017, 198: 122–144. DOI: https://doi.org/10.1016/j.apenergy.2017.04.048.

    Google Scholar 

  3. KAN M S, TAN A C C, MATHEW J. A review on prognostic techniques for non-stationary and non-linear rotating systems [J]. Mechanical Systems and Signal Processing, 2015, 62–63: 1–20. DOI: https://doi.org/10.1016/j.ymssp.2015.02.016.

    Google Scholar 

  4. AN D, KIM N H, CHOI J H. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews [J]. Reliability Engineering & System Safety, 2015, 133: 223–236. DOI: https://doi.org/10.1016/j.ress.2014.09.014.

    Google Scholar 

  5. RAI A, UPADHYAY S H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings [J]. Tribology International, 2016, 96: 289–306. DOI: https://doi.org/10.1016/j.triboint.2015.12.037.

    Google Scholar 

  6. MOSALLAM A, MEDJAHER K, ZERHOUNI N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction [J]. Journal of Intelligent Manufacturing, 2016, 27(5): 1037–1048. DOI: https://doi.org/10.1007/s10845-014-0933-4.

    Google Scholar 

  7. DENG Y J, BARROS A, GRALL A. Degradation modeling based on a time-dependent Ornstein-Uhlenbeck process and residual useful lifetime estimation [J]. IEEE Transactions on Reliability, 2016, 65(1): 126–140. DOI: https://doi.org/10.1109/TR.2015.2462353.

    Google Scholar 

  8. REN Lei, CUI Jin, SUN Ya-qiang, CHENG Xue-jun. Multi-bearing remaining useful life collaborative prediction: A deep learning approach [J]. Journal of Manufacturing Systems, 2017, 43: 248–256. DOI: https://doi.org/10.1016/j.jmsy.2017.02.013.

    Google Scholar 

  9. SUTRISNO E, OH H, VASAN A S S, PECHT M. Estimation of remaining useful life of ball bearings using data driven methodologies [C]// 2012 IEEE Conference on Prognostics and Health Management. Denver. New York, USA: IEEE, 2012. DOI: https://doi.org/10.1109/ICPHM.2012.6299548.

    Google Scholar 

  10. KIMOTHO J K, SONDERMANN-WOELKE C, MEYER T, SEXTRO W. Machinery prognostic method based on multi-class support vector machines and hybrid differential evolution-particle swarm optimization [J]. Chemical Engineering Transactions, 2013, 33: 619–624. DOI: https://doi.org/10.3303/CET1333104.

    Google Scholar 

  11. HONG Sheng, ZHOU Zheng, ZIO E, WANG Wen-bin. An adaptive method for health trend prediction of rotating bearings [J]. Digital Signal Processing, 2014, 35: 117–123. DOI: https://doi.org/10.1016/j.dsp.2014.08.006.

    Google Scholar 

  12. HONG S, ZHOU Z, ZIO E, HONG K. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method [J]. Digital Signal Processing, 2014, 27: 159–166. DOI: https://doi.org/10.1016/j.dsp.2013.12.010.

    Google Scholar 

  13. ZURITA D, CARINO J A, DELGADO M, ORTEGA J A. Distributed neuro-fuzzy feature forecasting approach for condition monitoring [C]// Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). New York, USA: IEEE, 2014. DOI: https://doi.org/10.1109/ETFA.2014.7005180.

    Google Scholar 

  14. SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression [J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52–62. DOI: https://doi.org/10.1109/TIM.2014.2330494.

    Google Scholar 

  15. NIE Yu-ting, WAN Jiu-qing. Estimation of remaining useful life of bearings using sparse representation method [C]// 2015 Prognostics and System Health Management Conference (PHM). New York, USA: IEEE, 2015. DOI: https://doi.org/10.1109/PHM.2015.7380094.

    Google Scholar 

  16. ZHANG Bin, ZHANG Li-jun, XU Jin-wu. Degradation feature selection for remaining useful life prediction of rolling element bearings [J]. Quality and Reliability Engineering International, 2016, 32(2): 547–554. DOI: https://doi.org/10.1002/qre.1771.

    Google Scholar 

  17. GUO Liang, GAO Hong-li, HUANG Hai-feng, HE Xiang, LI Shi-chao. Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring [J]. Shock and Vibration, 2016: 1–10. DOI: https://doi.org/10.1155/2016/4632562.

  18. MOSALLAM A, MEDJAHER K, ZERHOUNI N. Time series trending for condition assessment and prognostics [J]. Journal of Manufacturing Technology Management, 2014, 25(4): 550–567. DOI: https://doi.org/10.1108/JMTM-04-2013-0037.

    Google Scholar 

  19. LI Nai-peng, LEI Ya-guo, LIN Jing, DING S X. An improved exponential model for predicting remaining useful life of rolling element bearings [J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762–7773. DOI: https://doi.org/10.1109/TIE.2015.2455055.

    Google Scholar 

  20. WANG Lu, ZHANG Li, WANG Xue-zhi. Reliability estimation and remaining useful lifetime prediction for bearing based on proportional hazard model [J]. Journal of Central South University, 2015, 22(12): 4625–4633. DOI: https://doi.org/10.1007/s11771-015-3013-9.

    Google Scholar 

  21. CARINO J A, ZURITA D, DELGADO M, ORTEGA J A, ROMERO-TRONCOSO R J. Remaining useful life estimation of ball bearings by means of monotonic score calibration [C]// 2015 IEEE International Conference on Industrial Technology (ICIT). New York, USA: IEEE, 2015. DOI: https://doi.org/10.1109/ICIT.2015.7125351.

    Google Scholar 

  22. LEI Ya-guo, LI Nai-peng, LIN Jing. A new method based on stochastic process models for machine remaining useful life prediction [J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(12): 2671–2684. DOI: https://doi.org/10.1109/TIM.2016.2601004.

    Google Scholar 

  23. NIU G, QIAN F, CHOI B K. Bearing life prognosis based on monotonic feature selection and similarity modeling [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(18): 3183–3193. DOI: https://doi.org/10.1177/0954406215608892.

    Google Scholar 

  24. HUANG Ze-yi, XU Zheng-guo, KE Xiao-jie, WANG Wen-hai, SUN You-xian. Remaining useful life prediction for an adaptive skew-Wiener process model [J]. Mechanical Systems and Signal Processing, 2017, 87: 294–306. DOI: https://doi.org/10.1016/j.ymssp.2016.10.027.

    Google Scholar 

  25. CHENG Zhi-wei. Residual useful life prediction for rolling element bearings based on multi-feature fusion regression [C]// 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). New York, USA: IEEE, 2017. DOI: https://doi.org/10.1109/SDPC.2017.54.

    Google Scholar 

  26. TRINH H C, KWON Y K. An empirical investigation on a multiple filters-based approach for remaining useful life prediction [J]. Machines, 2018, 6(3): 35. DOI: https://doi.org/10.3390/machines6030035.

    Google Scholar 

  27. REN Lei, SUN Ya-qiang, CUI Jin, ZHANG Lin. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks [J]. Journal of Manufacturing Systems, 2018, 48: 71–77. DOI: https://doi.org/10.1016/j.jmsy.2018.04.008.

    Google Scholar 

  28. REN Lei, SUN Ya-qiang, WANG Hao, ZHANG Lin. Prediction of bearing remaining useful life with deep convolution neural network [J]. IEEE Access, 2018, 6: 13041–13049. DOI: https://doi.org/10.1109/ACCESS.2018.2804930.

    Google Scholar 

  29. DENG Sheng-cai, CHEN Zhi-qiang, CHEN Zhuo. Auxiliary particle filter-based remaining useful life prediction of rolling bearing [C]// 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). New York, USA: IEEE, 2017. DOI: https://doi.org/10.1109/SDPC.2017.13.

    Google Scholar 

  30. WU Yu-ting, YUAN Mei, DONG Shao-peng, LIN Li, LIU Ying-qi. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks [J]. Neurocomputing, 2018, 275: 167–179. DOI: https://doi.org/10.1016/j.neucom.2017.05.063.

    Google Scholar 

  31. LI Xiang, ZHANG Wei, DING Qian. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction [J]. Reliability Engineering & System Safety, 2019, 182: 208–218. DOI: https://doi.org/10.1016/j.ress.2018.11.011.

    Google Scholar 

  32. BEN ALI J, CHEBEL-MORELLO B, SAIDI L, MALINOWSKI S, FNAIECH F. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network [J]. Mechanical Systems and Signal Processing, 2015, 56–57: 150–172. DOI: https://doi.org/10.1016/j.ymssp.2014.10.014.

    Google Scholar 

  33. ZHAO Ming-hang, TANG Bao-ping, TAN Qian. Bearing remaining useful life estimation based on time-frequency representation and supervised dimensionality reduction [J]. Measurement, 2016, 86: 41–55. DOI: https://doi.org/10.1016/j.measurement.2015.11.047.

    Google Scholar 

  34. LIAO Lin-xia, JIN Wen-jing, PAVEL R. Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment [J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7076–7083. DOI: https://doi.org/10.1109/TIE.2016.2586442.

    Google Scholar 

  35. WANG Zhao-qiang, HU Chang-hua, FAN Hong-dong. Real-time remaining useful life prediction for a nonlinear degrading system in service: application to bearing data [J]. ASME Transactions on Mechatronics, 2018, 23(1): 211–222. DOI: https://doi.org/10.1109/TMECH.2017.2666199.

    Google Scholar 

  36. SINGLETON R K, STRANGAS E G, AVIYENTE S. Extended kalman filtering for remaining-useful-life estimation of bearings [J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1781–1790. DOI: https://doi.org/10.1109/TIE.2014.2336616.

    Google Scholar 

  37. FENG Yang, HUANG Xiao-diao, HONG Rong-jing, CHEN Jie. Online residual useful life prediction of large-size slewing bearings: A data fusion method [J]. Journal of Central South University, 2017, 24(1): 114–126. DOI: https://doi.org/10.1007/s11771-017-3414-z.

    Google Scholar 

  38. LIU Yu-mei, ZHAO Cong-cong, XIONG Ming-ye, ZHAO Ying-hui, QIAO Ning-guo, TIAN Guang-dong. Assessment of bearing performance degradation via extension and EEMD combined approach [J]. Journal of Central South University, 2017, 24(5): 1155–1163. DOI: https://doi.org/10.1007/s11771-017-3518-5.

    Google Scholar 

  39. BENKEDJOUH T, MEDJAHER K, ZERHOUNI N, RECHAK S. Remaining useful life estimation based on nonlinear feature reduction and support vector regression [J]. Engineering Applications of Artificial Intelligence, 2013, 26(7): 1751–1760. DOI: https://doi.org/10.1016/j.engappai.2013.02.006.

    Google Scholar 

  40. LEI Ya-guo, LI Nai-peng, GONTARZ S, LIN Jing, RADKOWSKI S, DYBALA J. A model-based method for remaining useful life prediction of machinery [J]. IEEE Transactions on Reliability, 2016, 65(3): 1314–1326. DOI: https://doi.org/10.1109/TR.2016.2570568.

    Google Scholar 

  41. LI Hong-kun, WANG Yin-hu. Rolling bearing reliability estimation based on logistic regression model [C]// 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE). New York, USA: IEEE, 2013. DOI: https://doi.org/10.1109/QR2MSE.2013.6625910.

    Google Scholar 

  42. LI Yao-long, LI Hong-ru, WANG Bing, GU Hong-qiang. Rolling element bearing performance degradation assessment using variational mode decomposition and Gathgeva clustering time series segmentation [J]. International Journal of Rotating Machinery, 2017: 1–12. DOI: https://doi.org/10.1155/2017/2598169.

  43. SLOUKIA F, AROUSSI M E, MEDROMI H, WAHBI M. Bearings prognostic using mixture of gaussians hidden Markov model and support vector machine [C]// 2013 ACS International Conference on Computer Systems and Applications (AICCSA). New York, USA: IEEE, 2013. DOI: https://doi.org/10.1109/AICCSA.2013.6616438.

    Google Scholar 

  44. WANG Yu, PENG Yi-zhen, ZI Yan-yang, JIN Xiao-hang, TSUI K L. A two-stage data-driven-based prognostic approach for bearing degradation problem [J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 924–932. DOI: https://doi.org/10.1109/TII.2016.2535368.

    Google Scholar 

  45. MEDJAHER K, ZERHOUNI N, BAKLOUTI J. Data-driven prognostics based on health indicator construction: Application to PRONOSTIA’s data [C]// 2013 European Control Conference (ECC). New York, USA: IEEE, 2013. DOI: https://doi.org/10.23919/ECC.2013.6669223.

    Google Scholar 

  46. LOUTAS T H, ROULIAS D, GEORGOULAS G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic E-support vectors regression [J]. IEEE Transactions on Reliability, 2013, 62(4): 821–832. DOI: https://doi.org/10.1109/TR.2013.2285318.

    Google Scholar 

  47. BOSKOSKI P, GASPERIN M, PETELIN D. Bearing fault prognostics based on signal complexity and Gaussian process models [C]// 2012 IEEE Conference on Prognostics and Health Management. New York, USA: IEEE, 2012. DOI: https://doi.org/10.1109/ICPHM.2012.6299545.

    Google Scholar 

  48. WANG Tian-yi. Bearing life prediction based on vibration signals: A case study and lessons learned [C]// 2012 IEEE Conference on Prognostics and Health Management. New York, USA: IEEE, 2012. DOI: https://doi.org/10.1109/ICPHM.2012.6299547.

    Google Scholar 

  49. POROTSKY S. Remaining useful life estimation for systems with non-trendability behaviour [C]// 2012 IEEE Conference on Prognostics and Health Management. New York, USA: IEEE, 2012. DOI: https://doi.org/10.1109/ICPHM.2012.6299544.

    Google Scholar 

  50. PAN Yong-ping, ER M J, LI Xiang, YU Hao-yong, GOURIVEAU R. Machine health condition prediction via online dynamic fuzzy neural networks [J]. Engineering Applications of Artificial Intelligence, 2014, 35: 105–113. DOI: https://doi.org/10.1016/j.engappai.2014.05.015.

    Google Scholar 

  51. XIAO Lei, CHEN Xiao-hui, ZHANG Xing-hui, LIU Min. A novel approach for bearing remaining useful life estimation under neither failure nor suspension histories condition [J]. Journal of Intelligent Manufacturing, 2017, 28(8): 1893–1914. DOI: https://doi.org/10.1007/s10845-015-1077-x.

    Google Scholar 

  52. FUMEO E, ONETO L, ANGUITA D. Condition based maintenance in railway transportation systems based on big data streaming analysis [J]. Procedia Computer Science, 2015, 53: 437–446. DOI: https://doi.org/10.1016/j.procs.2015.07.321.

    Google Scholar 

  53. JAVED K, GOURIVEAU R, ZERHOUNI N, NECTOUX P. Enabling health monitoring approach based on vibration data for accurate prognostics [J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 647–656. DOI: https://doi.org/10.1109/TIE.2014.2327917.

    Google Scholar 

  54. AN D, KIM N H, CHOI J. Bearing prognostics method based on entropy decrease at specific frequency [C]// 18th AIAA Non-Deterministic Approaches Conference. Reston, Virginia: AIAA, 2016. DOI: https://doi.org/10.2514/6.2016-1678.

    Google Scholar 

  55. HINCHI A Z, TKIOUAT M. Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network [J]. Procedia Computer Science, 2018, 127: 123–132. DOI: https://doi.org/10.1016/j.procs.2018.01.106.

    Google Scholar 

  56. JAVED K, GOURIVEAU R, ZERHOUNI N. Novel failure prognostics approach with dynamic thresholds for machine degradation [C]// IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society. New York, USA: IEEE, 2013. DOI: https://doi.org/10.1109/IECON.2013.6699844.

    Google Scholar 

  57. KHADERSAB A, SHIVAKUMAR S. Vibration analysis techniques for rotating machinery and its effect on bearing faults [J]. Procedia Manufacturing, 2018, 20: 247–252. DOI: https://doi.org/10.1016/j.promfg.2018.02.036.

    Google Scholar 

  58. SHAO Hai-dong, JIANG Hong-kai, LI Xing-qiu, LIANG Tian-chen. Rolling bearing fault detection using continuous deep belief network with locally linear embedding [J]. Computers in Industry, 2018, 96: 27–39. DOI: https://doi.org/10.1016/j.compind.2018.01.005.

    Google Scholar 

  59. SHE Dao-ming, JIA Min-ping. Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate [J]. Measurement, 2019, 135: 368–375. DOI: https://doi.org/10.1016/j.measurement.2018.11.040.

    Google Scholar 

  60. PEARSON R K. Outliers in process modeling and identification [J]. IEEE Transactions on Control Systems Technology, 2002, 10(1): 55–63. DOI: https://doi.org/10.1109/87.974338.

    Google Scholar 

  61. BABU C N, REDDY B E. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data [J]. Applied Soft Computing, 2014, 23: 27–38. DOI: https://doi.org/10.1016/j.asoc.2014.05.028.

    Google Scholar 

  62. PAN Yu-na, CHEN Jin, LI Xing-lin. Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means [J]. Mechanical Systems and Signal Processing, 2010, 24(2): 559–566. DOI: https://doi.org/10.1016/j.ymssp.2009.07.012.

    Google Scholar 

  63. CHENG Chang-qing, SA-NGASOONGSONG A, BEYCA O, LE T, YANG Hui, KONG Z, BUKKAPATNAM S T S. Time series forecasting for nonlinear and non-stationary processes: a review and comparative study [J]. IIE Transactions, 2015, 47(10): 1053–1071. DOI: https://doi.org/10.1080/0740817X.2014.999180.

    Google Scholar 

  64. WANG Sheng-nan, ZHANG Xiao-yong, GAO Dian-zhu, CHEN Bin, CHENG Yi-jun, YANG Ying-ze, YU Wen-tao, HUANG Zhi-wu, PENG Jun. A remaining useful life prediction model based on hybrid long-short sequences for engines [C]// 2018 21st International Conference on Intelligent Transportation Systems (ITSC). New York, USA: IEEE, 2018. DOI: https://doi.org/10.1109/ITSC.2018.8569668.

    Google Scholar 

  65. WANG Dong, ZHAO Yang, YANG Fang-fang, TSUI K L. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries [J]. Mechanical Systems and Signal Processing, 2017, 93: 531–544. DOI: https://doi.org/10.1016/j.ymssp.2017.02.027.

    Google Scholar 

  66. YAN Ji-hong, LEE J. A hybrid method for on-line performance assessment and life prediction in drilling operations [C]// 2007 IEEE International Conference on Automation and Logistics. New York, USA: IEEE, 2007. DOI: https://doi.org/10.1109/ICAL.2007.4338999.

    Google Scholar 

  67. PHAM H T, TRAN V T, YANG B S. A hybrid of nonlinear autoregressive model with exogenous input and autoregressive moving average model for long-term machine state forecasting [J]. Expert Systems with Applications, 2010, 37(4): 3310–3317. DOI: https://doi.org/10.1016/j.eswa.2009.10.020.

    Google Scholar 

  68. WU Wei, HU Jing-tao, ZHANG Ji-long. Prognostics of machine health condition using an improved ARIMA-based prediction method [C]// 2007 2nd IEEE Conference on Industrial Electronics and Applications. New York, USA: IEEE, 2007. DOI: https://doi.org/10.1109/ICIEA.2007.4318571.

    Google Scholar 

  69. ZHOU Yapeng, HUANG Miaohua. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model [J]. Microelectronics Reliability, 2016, 65: 265–273. DOI: https://doi.org/10.1016/j.microrel.2016.07.151.

    Google Scholar 

  70. RAI A, UPADHYAY S H. The use of MD-CUMSUM and NARX neural network for anticipating the remaining useful life of bearings [J]. Measurement, 2017, 111: 397–410. DOI: https://doi.org/10.1016/j.measurement.2017.07.030.

    Google Scholar 

  71. BEN ALI J, FNAIECH N, SAIDI L, CHEBEL-MORELLO B, FNAIECH F. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals [J]. Applied Acoustics, 2015, 89: 16–27. DOI: https://doi.org/10.1016/j.apacoust.2014.08.016.

    Google Scholar 

  72. SAMANTA B, AL-BALUSHI K R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features [J]. Mechanical Systems and Signal Processing, 2003, 17(2): 317–328. DOI: https://doi.org/10.1006/mssp.2001.1462.

    Google Scholar 

  73. ZHENG Xiu-juan, FANG Hua-jing. An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction [J]. Reliability Engineering & System Safety, 2015, 144: 74–82. DOI: https://doi.org/10.1016/j.ress.2015.07.013.

    Google Scholar 

  74. ANDRE D, NUHIC A, SOCZKA-GUTH T, SAUER D U. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles [J]. Engineering Applications of Artificial Intelligence, 2013, 26(3): 951–961. DOI: https://doi.org/10.1016/j.engappai.2012.09.013.

    Google Scholar 

  75. HOCHSTEIN A, AHN H I, LEUNG Y T, DENESUK M. Switching vector autoregressive models with higher-order regime dynamics Application to prognostics and health management [C]// 2014 International Conference on Prognostics and Health Management. New York, USA: IEEE, 2014.

    Google Scholar 

  76. PENG Yi-zhen, WANG Yu, ZI Yan-yang. Switching state-space degradation model with recursive filter/smoother for prognostics of remaining useful life [J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 822–832. DOI: https://doi.org/10.1109/TII.2018.2810284.

    Google Scholar 

  77. HAMILTON J D. Regime switching models [M]. Macroeconometrics and Time Series Analysis. London, UK: Palgrave Macmillan UK, 2010: 202–209. DOI: https://doi.org/10.1057/9780230280830_23.

    Google Scholar 

  78. SCHWARZ G. Estimating the dimension of a model [J]. The annals of statistics, 1978, 6(2): 461–464. https://projecteuclid.org/euclid.aos/1176344136.

    MathSciNet  MATH  Google Scholar 

  79. PERLIN M. MS_Regress-the MATLAB package for Markov regime switching models [R]. 2015. DOI: 10.2139/ssrn.1714016.

  80. SHAFER G. A mathematical theory of evidence [M]. Princeton: Princeton University Press, 1976. https://press.princeton.edu/titles/2439.html.

    MATH  Google Scholar 

  81. SENTZ K, FERSON S. Combination of evidence in Dempster-Shafer theory [R]. Office of Scientific and Technical Information (OSTI), 2002. DOI: https://doi.org/10.2172/800792.

  82. SMARANDACHE F, DEZERT J. Advances and applications of DSmT for information fusion [R]. Collected Works, 2015. https://hal.archives-ouvertes.fr/hal-01080187/.

  83. NECTOUX P, GOURIVEAU R, MEDJAHER K, RAMASSO E, CHEBEL-MORELLO B, ZERHOUNI N, VARNIER C. PRONOSTIA: An experimental platform for bearings accelerated degradation tests [C]// IEEE International Conference on Prognostics and Health Management. PHM’12. 2012: CPF12PHM-CDR. https://hal.archives-ouvertes.fr/hal-00719503.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Moini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramezani, S., Moini, A., Riahi, M. et al. A model to determining the remaining useful life of rotating equipment, based on a new approach to determining state of degradation. J. Cent. South Univ. 27, 2291–2310 (2020). https://doi.org/10.1007/s11771-020-4450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4450-7

Key words

  • remaining useful life (RUL)
  • prognostics and health management (PHM)
  • autoregressive markov regime switching (ARMRS)
  • health index (HI)
  • Dempster-Shafer theory
  • fuzzy c-means (FCM)
  • Kurtosis-entropy
  • degradation

关键词

  • 剩余使用寿命
  • 预后与健康管理
  • 自回归马尔可夫状态转换
  • 健康指数(HI)
  • Dempster-Shafer 理论
  • 模糊c 均值法
  • Kurtosis-entropy
  • 退化