Skip to main content
Log in

Assessing quality of crash modification factors estimated by empirical Bayes before-after methods

经验贝叶斯前后对比方法评估事故修正系数的精确度分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Before-after study with the empirical Bayes (EB) method is the state-of-the-art approach for estimating crash modification factors (CMFs). The EB method not only addresses the regression-to-the-mean bias, but also improves accuracy. However, the performance of the CMFs derived from the EB method has never been fully investigated. This study aims to examine the accuracy of CMFs estimated with the EB method. Artificial realistic data (ARD) and real crash data are used to evaluate the CMFs. The results indicate that: 1) The CMFs derived from the EB before-after method are nearly the same as the true values. 2) The estimated CMF standard errors do not reflect the true values. The estimation remains at the same level regardless of the pre-assumed CMF standard error. The EB before-after study is not sensitive to the variation of CMF among sites. 3) The analyses with real-world traffic and crash data with a dummy treatment indicate that the EB method tends to underestimate the standard error of the CMF. Safety researchers should recognize that the CMF variance may be biased when evaluating safety effectiveness by the EB method. It is necessary to revisit the algorithm for estimating CMF variance with the EB method.

摘要

事故修正系数(措施安全效果)的评估是交通安全管理的重要环节,经验贝叶斯(EB)方法是目前 最先进、首选的方法。该方法能够解决回归到均值的问题并提高评估精度,然而,尚未有学者对EB 方法所得到事故修正系数的精确度进行细致的分析,本论文旨在填补该项空白,并重点针对事故修正 系数的标准差进行分析。论文采用了模拟与实际观测两项数据对EB 方法进行了分析,结果表明:1) EB 方法得到的事故修正系数与理论值比较接近;2) EB 方法所得到事故修正系数的标准差并不能反映真 实值,估计值不随真实值的变化而变化;3) 基于实际数据的分析表明EB 方法往往低估事故修正系数 的标准差。交通安全研究人员应当注意在使用EB 方法评估安全效果时,事故修正系数的方差可能存 在偏差,有必要进一步优化EB 方法中方差的算法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Association of State Highway and Transportation Officials (AASHTO). Highway safety manual [M]. Washington DC, 2010.

  2. PIARC. Roadway safety manual [M]. World Road Association, 2003.

  3. GROSS F, PERSAUD B N, LYON C A. Guide to developing quality crash modification factors [R]. Washington DC: Federal Highway Administration, 2010.

    Google Scholar 

  4. WU L T. Examining the use of regression models for developing crash modification factors [D]. Texas A&M University, 2016.

  5. GOOCH J P, GAYAH V V, DONNEL E T. Quantifying the safety effects of horizontal curves on two-way, two-lane rural roads [J]. Accident Analysis & Prevention, 2016, 92: 71–81. DOI: https://doi.org/10.1016/j.aap.2016.03.024.

    Article  Google Scholar 

  6. WOOD J S, GOOCH J P, DONNELL E T. Estimating the safety effects of lane widths on urban streets in Nebraska using the propensity scores-potential outcomes framework [J]. Accident Analysis & Prevention, 2015, 82: 180–191. DOI: https://doi.org/10.1016/j.aap.2015.06.002.

    Article  Google Scholar 

  7. SASIDHARAN L, DONNELL E T. Propensity scores-potential outcomes framework to incorporate severity probabilities in the highway safety manual crash prediction algorithm [J]. Accident Analysis and Prevention, 2014, 71: 183–193. DOI: https://doi.org/10.1016/j.aap.2014.05.017.

    Article  Google Scholar 

  8. HAUER E. Observational before-after studies in road safety: Estimating the effect of highway and traffic engineering measures on road safety [M]. Tarrytown, N.Y., USA: Pergamon, 1997.

    Google Scholar 

  9. SHEN J, GAN A. Development of crash reduction factors: Methods, problems, and research needs [J]. Transportation Research Record, 2003, 1840(1): 50–56. DOI: https://doi.org/10.3141/1840-06.

    Article  Google Scholar 

  10. NOLAND R B, ADEDIJI Y. Are estimates of crash modification factors mis-specified? [J]. Accident Analysis & Prevention, 2018, 118: 29–37. DOI: https://doi.org/10.1016/j.aap.2018.05.017.

    Article  Google Scholar 

  11. WU L T, LORD D, ZOU Y J. Validation of crash modification factors derived from cross-sectional studies with regression models [J]. Transportation Research Record, 2015, 2514(1): 88–96. DOI: https://doi.org/10.3141/2514-10.

    Article  Google Scholar 

  12. WU L T, LORD D. Examining the influence of link function misspecification in conventional regression models for developing crash modification factors [J]. Accident Analysis & Prevention, 2017, 102: 123–135. DOI: https://doi.org/10.1016/j.aap.2017.02.012.

    Article  Google Scholar 

  13. WU L T, LORD D, GEEDIPALLY S R. Developing crash modification factors for horizontal curves on rural two-lane undivided highways using a cross-sectional study [J]. Transportation Research Record, 2017, 2636(1): 53–61. DOI: https://doi.org/10.3141/2636-07.

    Article  Google Scholar 

  14. HAUER E. The art of regression modeling in road safety [M]. New York: Springer, 2015.

    Book  Google Scholar 

  15. HAUER E. Even perfect regressions may not tell the effect of interventions [C]// The 92nd Annual Meeting of Transportation Research Board. Washington DC, 2013.

  16. HAUER E. Cause, effect and regression in road safety: A case study [J]. Accident Analysis & Prevention, 2010, 42(4): 1128–1135. DOI: https://doi.org/10.1016/j.aap.2009.12.027.

    Article  Google Scholar 

  17. FHWA. CMF clearinghouse brochure [EB/OL]. [2019-01-20]. http://www.cmfclearing-house.org/collateral/CMF_brochure.pdf.

  18. MONTELLA A. Safety evaluation of curve delineation improvements: Empirical Bayes observational before-and-after study [J]. Transportation Research Record, 2009, 2103(1): 69–79. DOI: https://doi.org/10.3141/2103-09.

    Article  Google Scholar 

  19. WU L T, MENG Y, KONG X Q, ZOU Y J. A novel approach for estimating crash modification factors: Jointly modeling crash counts and time intervals between crashes [C]// Transportation Research Board 98th Annual Meeting, Washington DC, 2019.

  20. LORD D, GEEDIPALLY S R. Safety effects of the red-light camera enforcement program in Chicago, Illinois [R]. Lord Consulting, College Station, Texas, 2014.

    Google Scholar 

  21. WU L T, GEEDIPALLY S R, PIKE A M. Safety evaluation of alternative audible lane departure warning treatments in reducing traffic crashes: an empirical Bayes observational before-after study [J]. Transportation Research Record, 2018, 2672(21): 30–40. DOI: https://doi.org/10.1177/0361198118776481.

    Article  Google Scholar 

  22. LORD D, MANNERING F. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives [J]. Transportation Research Part A: Policy and Practice, 2010, 44(5): 291–305. DOI: https://doi.org/10.1016/j.tra.2010.02.001.

    Google Scholar 

  23. WU L T, ZOU Y J, LORD D. Comparison of sichel and negative binomial models in hot spot identification [J]. Transportation Research Record, 2014, 2460(1): 107–116. DOI: https://doi.org/10.3141/2460-12.

    Article  Google Scholar 

  24. ZOU Y J, LORD D, ZHANG Y L, PENG Y C. Comparison of sichel and negative binomial models in estimating empirical Bayes estimates [J]. Transportation Research Record, 2013, 2392(1): 11–21. DOI: https://doi.org/10.3141/2392-02.

    Article  Google Scholar 

  25. LORD D, GEEDIPALLY S R, GUIKEMA S D. Extension of the application of Conway-Maxwell-Poisson models: Analyzing traffic crash data exhibiting underdispersion [J]. Risk Analysis: An International Journal, 2010, 30(8): 1268–1276. DOI: https://doi.org/10.1111/j.1539-6924.2010.01417.x.

    Article  Google Scholar 

  26. LORD D, GUIKEMA S D, GEEDIPALLY S R. Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes [J]. Accident Analysis & Prevention, 2008, 40(3): 1123–1134. DOI: https://doi.org/10.1016/j.aap.2007.12.003.

    Article  Google Scholar 

  27. ZOU Y J, ASH J E, PARK B J, LORD D, WU L T. Empirical Bayes estimates of finite mixture of negative binomial regression models and its application to highway safety [J]. Journal of Applied Statistics, 2018, 45(9): 1652–1669. DOI: https://doi.org/10.1080/02664763.2017.1389863.

    Article  MathSciNet  Google Scholar 

  28. PARK B J, LORD D, WU L T. Finite mixture modeling approach for developing crash modification factors in highway safety analysis [J]. Accident Analysis & Prevention, 2016, 97: 274–287. DOI: https://doi.org/10.1016/j.aap.2016.10.023.

    Article  Google Scholar 

  29. ZOU Y J, HENRICKSON K, WU LT, WANG Y H, ZHANG Z R. Application of the empirical Bayes method with the finite mixture model for identifying accident-prone spots [J]. Mathematical Problems in Engineering, 2015, 2015(10): 1–10. DOI: https://doi.org/10.1155/2015/958206.

    Google Scholar 

  30. PARK B J, LORD D, LEE C. Finite mixture modeling for vehicle crash data with application to hotspot identification [J]. Accident Analysis & Prevention, 2014, 71: 319–326. DOI: https://doi.org/10.1016/j.aap.2014.05.030.

    Article  Google Scholar 

  31. YANG X X, ZOU Y J, WU L T, ZHONG X Z, WANG Y H, IJAZ M, PENG Y C. Comparative analysis of the reported animal-vehicle collisions data and carcass removal data for hotspot identification [J]. Journal of Advanced Transportation, 2019, 2019(3): 1–13. DOI: https://doi.org/10.1155/2019/3521793.

    Google Scholar 

  32. HAUER E. Trustworthiness of safety performance functions [C]// The 93rd Annual Meeting of the Transportation Research Board. Washington DC, 2014.

  33. LORD D. Modeling motor vehicle crashes using Poisson-gamma models: Examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter [J]. Accident Analysis & Prevention, 2006, 38(4): 751–766. DOI: https://doi.org/10.1016/j.aap.2006.02.001.

    Article  Google Scholar 

  34. MANNERING F. Temporal instability and the analysis of highway accident data [J]. Analytic Methods in Accident Research, 2018, 17: 1–13. DOI: https://doi.org/10.1016/j.amar.2017.10.002.

    Article  Google Scholar 

  35. HAUER E, HARWOOD D W, COUNCIL F M, GRIFFITH M S. Estimating safety by the empirical Bayes method: A tutorial [J]. Transportation Research Record, 2002, 1784(1): 126–131. DOI: https://doi.org/10.3141/1784-16.

    Article  Google Scholar 

  36. YANG X, ZOU Y, TANG J, LIANG J, IJAZ M. Evaluation of short-term freeway speed prediction based on periodic analysis using statistical models and machine learning models [J]. Journal of Advanced Transportation, 2020. DOI: https://doi.org/10.1155/2020/9628957.

  37. DAS S, MINJARES-KYLE L, WU L, HENK R. Understanding crash potential associated with teen driving: Survey analysis using multivariate graphical method [J]. Journal of Safety Research, 2019, 70: 213–222. DOI: https://doi.org/10.1016/j.jsr.2019.07.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-tao Wu  (吴玲涛).

Additional information

Foundation item: Project(51978082) supported by the National Natural Science Foundation of China; Project(19B022) supported by the Outstanding Youth Foundation of Hunan Education Department, China; Project(2019QJCZ056) supported by the Young Teacher Development Foundation of Changsha University of Science & Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, Lt. & Huang, Zx. Assessing quality of crash modification factors estimated by empirical Bayes before-after methods. J. Cent. South Univ. 27, 2259–2268 (2020). https://doi.org/10.1007/s11771-020-4447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4447-2

Key words

关键词

Navigation