Skip to main content
Log in

Effect of cushion and cover on moisture distribution in clay embankments in southern China

垫层和包边土对中国南方地区黏土路堤湿度分布的影响研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To achieve durability of the embankment in southern China, a method to control the change of moisture content with the cushion and cover was proposed. A finite element model of cushion and cover considering different materials and thicknesses for a typical embankment was built, and 20 numerical analyses of transient seepage in the embankment were simulated. The results show that the sand cushion effectively blocks the effect of groundwater capillary rise and the minimum thickness of the sand cushion is 75 cm without considering the atmospheric environment. With the combination of sand cushion and clay cover, as the thickness of the clay cover increases, the duration time of the moisture content from the initial to relative equilibrium state increases, but the equilibrium moisture content is the same as that of the original embankment. Besides, with the combination of the sand cushion and sand cover, the moisture content inside the embankment remains the same, which is consistent with the optimum moisture content during construction. The combination of 75 cm sand cushion and 30 cm sand cover is a very effective method to block groundwater and atmospheric environment, and achieve the control of the humidity stability of the embankment in southern China.

摘要

为了实现中国南方地区路堤的耐久性,提出了一种运用垫层和包边控制路堤含水率变化的方法。 选取典型路堤结构建立了一种考虑不同材料、不同厚度的垫层和包边的有限元计算模型,并开展了 20 种瞬态渗流模拟。结果表明,在不考虑大气环境影响的前提下,砂垫层有效地阻断了地下水毛细上 升的影响,其最小厚度为75 cm。考虑大气环境后,采用砂垫层和黏土包边的组合,随着包边厚度的 增加,含水率从初始状态到相对平衡状态的时间延长,但平衡含水率与原路堤的相同。另外,结合砂 垫层和砂包边,路堤内部的含水率基本不变,与最佳含水率一致。通过比较分析,75 cm 砂垫层和30 cm 砂包边的组合,可以有效地阻止地下水和大气环境影响,是一种控制南方黏土路堤湿度稳定性的 有效方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG J H, DING L, LI F, PENG J H. Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China [J]. Journal of Cleaner Production, 2020, 255: 120223. DOI: https://doi.org/10.1016/j.jclepro.2020.120223.

    Article  Google Scholar 

  2. PENG J H, ZHANG J H, LI J, YAO Y S, ZHANG A S. Modeling humidity and stress-dependent subgrade soils in flexible pavements [J]. Computers and Geotechnics, 2020, 120: 103413. DOI: https://doi.org/10.1016/j.compgeo.2019.103413.

    Article  Google Scholar 

  3. YANG K H, THUO J N A A, HUYNH V D A, NGUYEN T S, PORTELINHA F H M. Numerical evaluation of reinforced slopes with various backfill-reinforcement-drainage systems subject to rainfall infiltration [J]. Computers and Geotechnics, 2018, 96: 25–39. DOI: https://doi.org/10.1016/j.compgeo.2017.10.012.

    Article  Google Scholar 

  4. VAHEDIFARD F, MORTEZAEI K, LESHCHINSKY B A, LESHCHINSKY D, LU N. Role of suction stress on service state behavior of geosynthetic-reinforced soil structures [J]. Transportation Geotechnics, 2016, 8: 45–56. DOI: https://doi.org/10.1016/j.trgeo.2016.02.002.

    Article  Google Scholar 

  5. ZENG L, XIAO L Y, ZHANG J H, FU H Y. The role of nanotechnology in subgrade and pavement engineering: A review [J]. Journal of Nanoscience and Nanotechnology, 2020, 20: 4607–4618. DOI: https://doi.org/10.1166/jnn.2020.18491.

    Article  Google Scholar 

  6. LI J H, DU L, CHEN R, ZHANG L M. Numerical investigation of the performance of covers with capillary barrier effects in South China [J]. Computers and Geotechnics, 2013, 48: 304–315. DOI: https://doi.org/10.1016/j.compgeo.2012.08.008.

    Article  Google Scholar 

  7. YAO Y S, ZHENG J L, CHEN Z S, ZHANG J H, LI Y. Field measurements and numerical simulations of temperature and moisture in highway engineering using a frequency domain reflectometry sensor [J]. Sensors, 2016, 16(6): 857. DOI: https://doi.org/10.3390/s16060857.

    Article  Google Scholar 

  8. HATAMI K, ESMAILI D, CHAN E C, MILLER G A. Moisture reduction factors for shear strength of unsaturated reinforced embankments [J]. International Journal of Geomechanics, 2016, 16(6): D4016001. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000624.

    Article  Google Scholar 

  9. ZHANG J H, PENG J H, ZHANG A S, LI J. Prediction of permanent deformation for subgrade soils under traffic loading in southern China [J]. International Journal of Pavement Engineering, 2020. DOI: https://doi.org/10.1080/10298436.2020.1765244.

  10. ZHANG J H, PENG J H, ZENG L, LI J, LI F. Rapid estimation of resilient modulus of subgrade soils using performance-related soil properties [J]. International Journal of Pavement Engineering, 2019. DOI: https://doi.org/10.1080/10298436.2019.1643022.

  11. ABUHAJAR O, EL NAGGAR H, NEWSON T. Numerical modeling of soil and surface foundation pressure effects on buried box culvert behavior [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 04016072. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001567.

    Article  Google Scholar 

  12. WEI H W, WU Y Z, YU Z H. Design parameter optimization of beam foundation on soft soil layer with nonlinear finite element [J]. Journal of Central South University, 2012, 19(6): 1753–1763. DOI: https://doi.org/10.1007/s11771-012-1202-3.

    Article  Google Scholar 

  13. GASMO J M, RAHARDJO H, LEONG E C. Infiltration effects on stability of a residual soil slope [J]. Computers and Geotechnics, 2000, 26(2): 145–165. DOI: https://doi.org/10.1016/s0266-352x(99)00035-x.

    Article  Google Scholar 

  14. LIU Z, YU X, WAN L. Capillary rise method for the measurement of the contact angle of soils [J]. Acta Geotechnica, 2016, 11(1): 21–35. DOI: https://doi.org/10.1007/s11440-014-0352-x.

    Article  Google Scholar 

  15. YAN C G, WAN Q, XU Y, XIE Y L, YIN P J. Experimental study of barrier effect on moisture movement and mechanical behaviors of loess soil [J]. Engineering Geology, 2018, 240: 1–9. DOI: https://doi.org/10.1016/j.enggeo.2018.04.007.

    Article  Google Scholar 

  16. HELLWIG D H R. Evaporation of water from sand: 4. The influence of thedepth of the water-table and the particle size distribution of the sand [J]. Journal of Hydrology, 1973, 18(3,4): 317–327. DOI: https://doi.org/10.1016/0022-1694(73)90055-3.

    Google Scholar 

  17. SHAH N, NACHABE M, ROSS M. Extinction depth and evapotranspiration from ground water under selected land covers [J]. Ground Water, 2007, 45(3): 329–338. DOI: https://doi.org/10.1111/j.1745-6584.2007.00302.x.

    Article  Google Scholar 

  18. LIU J, YAO H L, CHEN P, LU Z, LUO X W. Theoretical analysis and experimental study of subgrade moisture variation and underground antidrainage technique under groundwater fluctuations [J]. Journal of Applied Mathematics, 2013(5): 703251. DOI: https://doi.org/10.1155/2013/703251.

  19. ZHANG L M, KE Y Q. Combinations of soil materials for granular capillary barriers for minimizing rainfall infiltration and gas emission [J]. Canadian Geotechnical Journal, 2017, 54(11): 1580–1591. DOI: https://doi.org/10.1139/cgj-2016-0334.

    Article  MathSciNet  Google Scholar 

  20. LEWIS T W, PIVONKA P, FITYUS S G, SMITH D W. Parametric sensitivity analysis of coupled mechanical consolidation and contaminant transport through clay barriers [J]. Computers and Geotechnics, 2009, 36(1): 31–40. DOI: https://doi.org/10.1016/j.compgeo.2008.04.003.

    Article  Google Scholar 

  21. LIU X, SHENG K, HUA J H, HONG B N, ZHU J J. Utilization of high liquid limit soil as subgrade materials with pack-and-cover method in road embankment construction [J]. International Journal of Civil Engineering, 2015, 13(3b): 167–174. DOI: https://doi.org/10.1002/9783527621866.ch5.

    Google Scholar 

  22. GEE G W, WARD A L, MEYER P D. Method to estimate water storage capacity of capillary barriers [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 125(10): 297–302. DOI: https://doi.org/10.1061/(asce)1090-0241(1998)124:4(297).

    Google Scholar 

  23. NICHOLSON R V, GILLHAM R W, CHERRY J A, REARDON E J. Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers [J]. Canadian Geotechnical Journal, 1989, 27(3): 402–403. DOI: https://doi.org/10.1139/t90-052.

    Article  Google Scholar 

  24. LAI J X, LIU H Q, QIU J L, CHEN J X. Settlement analysis of saturated tailings dam treated by CFG pile composite foundation [J]. Advances in Materials Science and Engineering, 2016: 7383762. DOI: https://doi.org/10.1155/2016/7383762.

  25. ZHANG W J, SUN C, QIU Q W. Characterizing of a capillary barrier evapotranspirative cover under high precipitation conditions [J]. Environmental Earth Sciences, 2016, 75(6): 513. DOI: https://doi.org/10.1007/s12665-015-5214-9.

    Article  Google Scholar 

  26. YANG H, RAHARDJO H, LEONG E C, FREDLUND D G. A study of infiltration on three sand capillary barriers [J]. Canadian Geotechnical Journal, 2004, 41(4): 629–643. DOI: https://doi.org/10.1139/t04-021.

    Article  Google Scholar 

  27. HARNAS F R, RAHARDJO H, LEONG E C, WANG J Y. Experimental study on dual capillary barrier using recycled asphalt pavement materials [J]. Canadian Geotechnical Journal, 2014, 51(10): 1165–1177. DOI: https://doi.org/10.1139/cgj-2013-0432.

    Article  Google Scholar 

  28. COLEMAN J D, RUSSAM K. The effect of climatic factors on subgrade moisture conditions [J]. Géotechnique, 1961, 11(1): 22–28. DOI: https://doi.org/10.1680/geot.1961.11.1.22.

    Article  Google Scholar 

  29. CHANDLER N, PALSON J, BURNS T. Capillary rise experiment to assess effectiveness of an enzyme soil stabilizer [J]. Canadian Geotechnical Journal, 2017, 54(10): 1509–1517. DOI: https://doi.org/10.1139/cgj-2016-0511.

    Article  Google Scholar 

  30. PREDELUS D, COUTINHO A P, LASSABATERE L, BIEN L B, WINIARSKI T, ANGULO-JARAMILLO R. Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale [J]. Journal of Contaminant Hydrology, 2015, 181: 69–81. DOI: https://doi.org/10.1016/j.jconhyd.2015.06.008.

    Article  Google Scholar 

  31. BRADSHAW S L, BENSON C H, SCALIA J. Hydration and cation exchange during subgrade hydration and effect on hydraulic conductivity of geosynthetic clay liners [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(4): 526–538. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000793.

    Article  Google Scholar 

  32. ZHANG J H, PENG J H, LIU W Z, LU W H. Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction [J]. Road Materials and Pavement Design, 2019: 1–13. DOI: https://doi.org/10.1080/14680629.2019.1651756.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zeng  (曾铃).

Additional information

Foundation item: Project(2017YFC0805307) supported by the National Key Research and Development Program of China; Projects(51838001, 51878070, 51878078, 51911530215, 51927814) supported by the National Natural Science Foundation of China; Project(2018JJ1026) supported by the Excellent Youth Foundation of Natural Science Foundation of Hunan Province, China; Project(17A008) supported by the Key Project of Education Department of Hunan Province, China; Projects(kfj150103, kfj170106) supported by the Changsha University of Science & Technology via Key Project of Open Research Fund of National Engineering Laboratory of Highway Maintenance Technology, China; Project(kfj170404) supported by the Open Fund of Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road and Traffic Safety of Ministry of Education (Changsha University of Science & Technology), China; Project(CX2018B527) supported by the Hunan Provincial Innovation Foundation for Postgraduate, China; Project(2018-025) supported by the Training Program for High-level Technical Personnel in Transportation Industry, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jh., Li, F., Zeng, L. et al. Effect of cushion and cover on moisture distribution in clay embankments in southern China. J. Cent. South Univ. 27, 1893–1906 (2020). https://doi.org/10.1007/s11771-020-4418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4418-7

Keywords

关键词

Navigation