Skip to main content
Log in

Experimental and numerical studies on aluminum-stainless steel explosive cladding

铝钢爆炸焊接的实验与数值研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, the effect of varied loading ratio (mass of the explosive/mass of flyer plate) on the nature of interface, temperature and pressure developed in aluminum-steel explosive cladding is presented. Increase in the loading ratio, R, enhances the pressure developed, kinetic energy utilization and deformation work performed. Interfacial microstructures exhibit the formation of molten layer at few spots, owing to the increase in temperature beyond the melting point of parent alloy. The increase in temperature and the quantum of pressure developed were determined by numerical simulation performed in Ansys AUTODYN by employing smoothed particle hydrodynamics (SPH) method. The positioning of the experimental conditions on the weldability window is presented as well.

摘要

本文研究了变化载荷比(炸药质量/翼板质量)对铝钢爆炸焊接界面的性质、 温度和压力的影响. 增加载荷比 R 会增大爆炸撞击点的压力、 动能的利用和变形功. 当温度升高到超过母体金属的熔点时, 在界面微结构中的一些点形成熔融层. 在 Ansys AUTODYN 中运用光滑质点流体动力学(SPH)法对温度和压力的增加进行数值模拟, 确定爆炸异种金属焊接的工艺条件.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LU Y, MAYTON E, SONG H, KIMCHI M, ZHANG W. Dissimilar metal joining of aluminum to steel by ultrasonic plus resistance spot welding-Microstructure and mechanical properties [J]. Materials and Design, 2019, 165: 107585. DOI: https://doi.org/10.1016/j.matdes.2019.107585.

    Article  Google Scholar 

  2. ACEVES S M, ESPINOSA-LOZA F, ELMER J W, HUBER R. Comparison of Cu, Ti and Ta interlayer explosively fabricated aluminum to stainless steel transition joints for cryogenic pressurized hydrogen storage [J]. International Journal of Hydrogen Energy, 2015, 40(3): 1490–1503. DOI: https://doi.org/10.1016/j.ijhydene.2014.11.038.

    Article  Google Scholar 

  3. CORIGLIANO P, CRUPI V, GUGLIELMINO E, SILI A M. Full-field analysis of AL/FE explosive welded joints for shipbuilding applications [J]. Marine Structures, 2018, 57: 207–218. DOI: https://doi.org/10.1016/j.marstruc.2017.10.004.

    Article  Google Scholar 

  4. SARAVANAN S, RAGHUKANDAN K, KUMAR P. Effect of wire mesh interlayer in explosive cladding of dissimilar grade aluminum plates [J]. Journal of Central South University, 2019, 26(3): 604–611. DOI: https://doi.org/10.1007/s11771-019-4031-9.

    Article  Google Scholar 

  5. CARVALHO G H S F L, GALVÃO I, MENDES R, LEAL R M, LOUREIRO A. Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds [J]. Materials Characterization, 2018, 142: 432–442. DOI: https://doi.org/10.1016/j.matchar.2018.06.005.

    Article  Google Scholar 

  6. SARAVANAN S, INOKAWA H, TOMOSHIGE R, RAGHUKANDAN K. Effect of silicon carbide particles in microstructure and mechanical properties of dissimilar aluminium explosive cladding [J]. Journal of Manufacturing Processes, 2019, 47: 32–40. DOI: https://doi.org/10.1016/j.jmapro.2019.09.027.

    Article  Google Scholar 

  7. GLADKOVSKY S V, KUTENEVA S V, SERGEEV S N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding [J]. Materials Characterization, 2019, 154: 294–303. DOI: https://doi.org/10.1016/j.matchar.2019.06.008.

    Article  Google Scholar 

  8. WANG Y, LI X, WANG X, YAN H. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding [J]. Fusion Engineering and Design, 2018, 137: 91–96. DOI: https://doi.org/10.1016/j.fusengdes.2018.08.017.

    Article  Google Scholar 

  9. ZENG X Y, WANG Y X, LI X Q, LI X J, ZHAO T J. Effects of gaseous media on interfacial microstructure and mechanical properties of titanium/steel explosive welded composite plate [J]. Fusion Engineering and Design, 2019, 148: 111292. DOI: https://doi.org/10.1016/j.fusengdes.2019.111292.

    Article  Google Scholar 

  10. ZHANG H, JIAO K X, ZHANG J L, LIU J. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding [J]. Materials and Design, 2018, 154: 140–152. DOI: https://doi.org/10.1016/j.matdes.2018.05.027.

    Article  Google Scholar 

  11. GUO X, TAO J, WANG W, LI H, WANG H C. Effects of the inner mould material on the aluminium-316L stainless steel explosive clad pipe [J]. Materials and Design, 2013, 49: 116–122. DOI: https://doi.org/10.1016/j.matdes.2013.02.001.

    Article  Google Scholar 

  12. SARAVANAN S, RAGHUKANDAN K. Influence of interlayer in explosive cladding of dissimilar metals [J]. Materials and Manufacturing Processes, 2013, 28(5): 589–594. DOI: https://doi.org/10.1080/10426914.2012.736665.

    Article  Google Scholar 

  13. REN Bao-xiang, TAO Gang, WEN Peng, DU Chang-xing. Study on weldability window and interface morphology of steel tube and tungsten alloy rod welded by explosive welding [J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105005. DOI: https://doi.org/10.1016/j.ijrmhm.2019.105005.

    Article  Google Scholar 

  14. YANG M, SHEN Z W, CHEN D G, DENG Y X. Microstructure and mechanical properties of Al-Fe meshing bonding interfaces manufactured by explosive welding [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 680–691. DOI: https://doi.org/10.1016/S1003-6326(19)64978-2.

    Article  Google Scholar 

  15. SARAVANAN S, RAGHUKANDAN K. Energy dissipation in explosive welding of dissimilar metals [J]. Materials Science Forum, 2011, 673: 125–129. DOI: https://doi.org/10.4028/www.scientific.net/MSF.673.125.

    Article  Google Scholar 

  16. SATYANARAYAN, MORI A, NISHI M, HOKAMOTO K. Underwater shock wave weldability window for Sn-Cu plates [J]. Journal of Materials Processing Technology, 2019, 267: 152–158. DOI: https://doi.org/10.1016/j.jmatprotec.2018.11.044.

    Article  Google Scholar 

  17. LIU M B, ZHANG Z L, FENG D L. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding [J]. Computational Mechanics, 2017, 60(3): 513–529. DOI: https://doi.org/10.1007/s00466-017-1420-5.

    Article  MathSciNet  Google Scholar 

  18. HEUZÉ O. General form of the Mie-Grüneisen equation of state [J]. Comptes Rendus Mecanique, 2012, 340(10): 679–687. DOI: https://doi.org/10.1016/j.crme.2012.10.044.

    Article  Google Scholar 

  19. SOMASUNDARAM S, KRISHNAMURTHY R, KAZUYUKI H. Effect of process parameters on microstructural and mechanical properties of Ti-SS 304L explosive cladding [J]. Journal of Central South University, 2017, 24(6): 1245–1251. DOI: https://doi.org/10.1007/s11771-017-3528-3.

    Article  Google Scholar 

  20. YANG M, MA H, SHEN Z. Study on explosive welding of Ta2 titanium to Q235 steel using colloid water as a covering for explosives [J]. Journal of Materials Research and Technology, 2019, 8(6): 5572–5580. DOI: https://doi.org/10.1016/j.jmrt.2019.09.025.

    Article  Google Scholar 

  21. SATYANARAYAN, TANAKA S, MORI A, HOKAMOTO K. Welding of Sn and Cu plates using controlled underwater shock wave [J]. Journal of Materials Processing Technology, 2017, 245: 300–308. DOI: https://doi.org/10.1016/j.jmatprotec.2017.02.030.

    Article  Google Scholar 

  22. TAMILCHELVAN P, RAGHUKANDAN K, SARAVANAN S. Kinetic energy dissipation in Ti-SS explosive cladding with multi loading ratios [J]. IJST-Transactions of Mechanical Engineering, 2014, 38(M1): 91–96. https://ww.sid.ir/en/VEWSSID/J_pdf/8542014M112.pdf.

    Google Scholar 

  23. SARAVANAN S, RAGHUKANDAN K, HOKAMOTO K. Improved microstructure and mechanical properties of dissimilar explosive cladding by means of interlayer technique [J]. Archives of Civil and Mechanical Engineering, 2016, 16(4): 563–568. DOI: https://doi.org/10.1016/j.acme.2016.03.009.

    Article  Google Scholar 

  24. BATAEV I A, LAZURENKO D V, TANAKA S, HOKAMOTO K, BATAEV A A, GUO Y, JORGE J A M. High cooling rates and metastable phases at the interfaces of explosively welded materials [J]. Acta Materialia, 2017, 135: 277–289. DOI: https://doi.org/10.1016/j.actamat.2017.06.038.

    Article  Google Scholar 

  25. SARAVANAN S, RAGHUKANDAN K. Thermal kinetics in explosive cladding of dissimilar metals [J]. Science and Technology of Welding and Joining, 2012, 17(2): 99–103. DOI: https://doi.org/10.1179/1362171811Y.0000000080.

    Article  Google Scholar 

  26. ATHAR M H, TOLAMINEJAD B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding [J]. Materials and Design, 2015, 86: 516–525. DOI: https://doi.org/10.1016/j.matdes.2015.07.114.

    Article  Google Scholar 

  27. KUMAR C W D, SARAVANAN S, RAGHUKANDAN K. Influence of grooved base plate on microstructure and mechanical strength of aluminum-stainless steel explosive cladding [J]. Transactions of the Indian Institute of Metals, 2019, 72(12): 3269–3276. DOI: https://doi.org/10.1007/s12666-019-01795-w.

    Article  Google Scholar 

  28. ZHANG Z L, LIU M B. Numerical studies on explosive welding with ANFO by using a density adaptive SPH method [J]. Journal of Manufacturing Processes, 2019, 41: 208–220. DOI: https://doi.org/10.1016/j.jmapro.2019.03.039.

    Article  Google Scholar 

  29. ZHOU Q, FENG J, CHEN P. Numerical and experimental studies on the explosive welding of tungsten foil to copper [J]. Materials, 2017, 10(9): 984. DOI: https://doi.org/10.3390/ma10090984.

    Article  Google Scholar 

  30. LIU R, WANG W, ZHANG T, YUAN X. Numerical study of Ti/Al/Mg three-layer plates on the interface behavior in explosive welding [J]. Science and Engineering of Composite Materials, 2017, 24(6): 833–843. DOI: https://doi.org/10.1515/secm-2015-0491.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saravanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elango, E., Saravanan, S. & Raghukandan, K. Experimental and numerical studies on aluminum-stainless steel explosive cladding. J. Cent. South Univ. 27, 1742–1753 (2020). https://doi.org/10.1007/s11771-020-4404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4404-0

Key words

关键词

Navigation