Skip to main content
Log in

Dissolution of gold in chalcopyrite-containing cyanide solutions

金在含黄铜矿的氰化物溶液中的溶解

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The gold dissolution in anoxic cyanide solution in the presence of chalcopyrite was studied with a rotating disc electrode. It was found that the presence of chalcopyrite reduced and enhanced the dissolution activity of pure gold in the low and high potential regions, respectively. The dissolution of gold was diffusion-controlled at low potentials (≤177 mV) and low cyanide concentrations (≤980 mg/L); however, above the cyanide concentration of 980 mg/L, the current density of gold decreased and the dissolution of gold changed from diffusion-control to electrochemical reaction-control. At high potentials (>177 mV), gold dissolution was always controlled by diffusion. In cyanide solution containing chalcopyrite, appropriate increase of pH value and temperature could accelerate the dissolution of gold, but high pH value would promote the generation of passivation, which was harmful for the dissolution of gold in cyanide solution.

摘要

利用旋转圆盘电极研究了金在有黄铜矿存在的缺氧氰化物溶液中的阳极溶解特性. 研究发现: 黄铜矿的存在会削弱金在低电位区的氰化溶解活性, 但会增强其在高电位区的溶解活性. 在电位 ≤177 mV 时, 金的溶解过程控制步骤与体系中氰化物浓度有关, 当氰化物浓度低于 980 mg/L 时, 金的溶解过程受扩散控制; 当氰化物浓度高于 980 mg/L 时, 金的阳极溶解电流密度降低, 溶解过程由扩散控制转变为电化学反应控制. 在电位>177 mV 时, 金的阳极溶解始终受扩散控制, 而与体系中氰化钠浓度无关. 同时, 在含黄铜矿的氰化物溶液中, 适当提高体系 pH 值和升高温度可以促进金阳极 溶解, 但是 pH>11.5 也会促进钝化作用的产生而对金的氰化溶解不利.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BAS A D, GHALI E, CHOI Y. A review on electrochemical dissolution and passivation of gold during cyanidation in presence of sulphides and oxides [J]. Hydrometallurgy, 2017, 172: 30–44. Doi: 10.1016/j.hydromet.2017.12.016.

    Article  Google Scholar 

  2. KUDRYK V, KELLOGG H H. Mechanism and rate-controlling factors in the dissolution of gold in cyanide solution [J]. JOM, 1954, 6(5): 541–548. Doi: 10.1007/ BF03398872.

    Article  Google Scholar 

  3. JEFFREY M I, RITCHIE I M. The leaching and electrochemistry of gold in high purity cyanide solutions [J]. Journal of the Electrochemical Society, 2001, 148(4): D29-D36. Doi: 10.1149/1.1353573.

    Google Scholar 

  4. MRKUSIC D, PAYNTER J. The recovery of gold from sulphidic and arsenical ores mainly from the Barberton area [R]. Johannesburg: National Institute for Metallurgy, 1970: 911.

    Google Scholar 

  5. GUAN Y, HAN K N. An electrochemical study on the dissolution of gold and copper from gold/copper alloys [J]. Metallurgical & Materials Transactions B, 1994, 25(6): 817–827. Doi: 10.1007/BF02662764.

    Article  Google Scholar 

  6. YANG Bao-jun, ZHAO Chun-xiao, LUO Wen, LIAO Rui, GAN Min, WANG Jun, LIU Xue-duan, QIU Guan-zhou. Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans [J]. Journal of Hazardous Materials, 2020, 392: 122290. Doi: 10.1016/j.jhazmat.2020.122290.

    Article  Google Scholar 

  7. YANG Bao-jun, LIN Mo, FANG Jing-hua, ZHANG Rui-yong, LUO Wen, WANG Xing-xing, LIAO Rui, WU Bai-qiang, WANG Jun, GAN Min. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans [J]. Science of the Total Environment, 2020, 698: 134175. Doi: 10.1016/ j.scitotenv.2019.134175.

    Article  Google Scholar 

  8. TSHILOMBO A F, SANDENBERGH R F. Electrochemical study of the effect of lead and sulphide ions on the dissolution rate of gold in alkaline cyanide solutions [J]. Hydrometallurgy, 2001, 60(1): 55–67. Doi: 10.1016/S0304-386X(00)00157-2.

    Article  Google Scholar 

  9. BAS A D, KOC E, YAZICI E Y, DEVECI H. Treatment of copper-rich gold ore by cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(2): 597–607. Doi: 10.1016/S1003-6326(15)63642-1.

    Article  Google Scholar 

  10. DESCHENES G, PRUDHOMME P J H. Cyanidation of a copper-gold ore [J]. International Journal of Mineral Processing, 1997, 50: 127–141. Doi: 10.1016/S0301-7516(97)00008-2.

    Article  Google Scholar 

  11. LAN Zhuo-yue, HU Yue-hua, LIU Jian-she, WANG Jun. Solvent extraction of copper and zinc from bioleaching solutions with LIX 984 and D2EHPA [J]. Journal of Central South University of Technology, 2005, 12(1): 45–49. Doi: 10.1007/s11771-005-020

    Article  Google Scholar 

  12. WANG Jun, QIN Wen-qing, ZHANG Yan-sheng, YANG Cong-ren, ZHANG Jian-wen, LAI Shao-shi, SHANG He, QIU Guan-zhou. Bacterial leaching of chalcopyrite and bornite with native bioleaching microorganism [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1468–1472. Doi: 10.1016/S 1003-6326(09)60027-3.

    Article  Google Scholar 

  13. ANDERSON C G. Alkaline sulfide gold leaching kinetics [J]. Minerals Engineering, 2016, 92: 248–256. Doi: 10.1016/j.mineng.2016.01.009.

    Article  Google Scholar 

  14. AZIZIA A, PETREB C F, OLSENB C, LLARACHIA F. Electrochemical behavior of gold cyanidation in the presence of a sulfide-rich industrial ore versus its major constitutive sulfide minerals [J]. Hydrometallurgy, 2010, 101(3, 4): 108–119. Doi: 10.1016/j.hydromet.2009.12.004.

    Article  Google Scholar 

  15. DESCHENES G, GUO H, XIA C, PRATT A, FULTON M, CHOI Y, PRICE J. A study of the effect of djurliete, bornite and chalcopyrite during the dissolution of gold with a solution of ammonia-cyanide [J]. Minerals, 2012, 2(4): 459–472. Doi: 10.3390/min2040459.

    Article  Google Scholar 

  16. FISHER W W. Comparison of chalcocite dissolution in the sulfate, perchlorate, nitrate, chloride, ammonia, and cyanide systems [J]. Minerals Engineering, 1994, 7(1): 99–103. Doi: 10.1016/0892-6875(94)90150-3.

    Article  Google Scholar 

  17. LA BROOY S R, LINGE H G, WALKER G S. Review of gold extraction from ores [J]. Minerals Engineering, 1994, 7(10): 1213–1241. Doi: 10.1016/0892-6875(94)90114-7.

    Article  Google Scholar 

  18. BRICENO A, CHANDER S. Oxidation of hydrosulphide ions on gold, Part I: A cyclic voltammetry study [J]. Journal of Applied Electrochemistry, 1990, 20(3): 506–511. Doi: 10.1007/BFO1076064.

    Article  Google Scholar 

  19. HAMILTON I C, WOODS R. An investigation of the deposition and reactions of sulphur on gold electrodes [J]. Journal of Applied Electrochemistry, 1983, 13(6): 783–794. Doi: 10.1007/bf00615828.

    Article  Google Scholar 

  20. JEFFREY M I, BREUER P L. The cyanide leaching of gold in solutions containing sulfide [J]. Minerals Engineering, 2000, 13(10): 1097–1106. Doi: 10.1016/S0892-6875(00)00093-5.

    Article  Google Scholar 

  21. LORENZEN L, DEVENTER J S J V. Electrochemical interactions between gold and its associated minerals during cyanidation [J]. Hydrometallurgy, 1992, 30(1–3): 177–193. Doi: 10.1016/0304-386X(92)90083-C.

    Article  Google Scholar 

  22. ZHAO Hong-bo, WANG Jun, GAN Xiao-wen, HU Ming-hao, TAO Lang, QIN Wen-qing, QIU Guan-zhou. Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of poly sulfide by controlling redox potential [J]. Hydrometallurgy, 2016, 164: 159–165. Doi: 10.1016/j.hydromet.2016.04.013.

    Article  Google Scholar 

  23. AGHAMIRIAN M M, YEN W T. Mechanisms of galvanic interactions between gold and sulfide minerals in cyanide solution [J]. Minerals Engineering, 2005, 18(4): 393–407. Doi: 10.1016/j.mineng.2004.07.005.

    Article  Google Scholar 

  24. WANG Jun, ZHOU Hong-bo, QIN Wen-qing, QIU Guan-zhou. Bioleaching of complex polymetallic sulfide ores by mixed culture [J]. Journal of Central South University, 2014, 21(7): 2633–2637. Doi: 10.1007/s11771-014-2223-x.

    Article  Google Scholar 

  25. HUANG X, ZHAO H B, ZHANG Y, LIAO R, WANG J, QIN W Q, QIU G Z. A strategy to accelerate the bioleaching of chalcopyrite through the goethite process [J]. Minerals & Metallurgical Processing, 2018, 35(4): 171–175. Doi: 10.19150/mmp.8593.

    Article  Google Scholar 

  26. ZHAO Hong-bo, GAN Xiao-wen, WANG Jun, TAO Lang, QIN Wen-qing, QIU Guan-zhou. Stepwise bioleaching of Cu-Zn mixed ores with comprehensive utilization of silver-bearing solid waste through a new technique process [J]. Hydrometallurgy, 2017, 171: 374–386. Doi: 10.1016/ j.hydromet.2017.06.002.

    Article  Google Scholar 

  27. WANG Jun, LIAO Rui, TAO Lang, ZHAO Hong-bo, ZHAI Rui, QIN Wen-qing, QIU Guan-zhou. A comprehensive utilization of silver-bearing solid wastes in chalcopyrite bioleaching [J]. Hydrometallurgy, 2017, 169: 152–157. Doi: 10.1016/j.hydromet.2017.01.006.

    Article  Google Scholar 

  28. FANG Jing-hua, LIU Yong, HE Wan-li, QIN Wen-qing, QIU Guan-zhou, WANG Jun. Transformation of iron in pure culture process of extremely acidophilic microorganisms [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1150–1155. Doi: 10.1016/S1003-6326(17)60134-1.

    Article  Google Scholar 

  29. ZHAO Hong-bo, WANG Jun, GAN Xiao-wen, HU Ming-hao, ZHANG Er-xing, QIN Wen-qing, QIU Guan-zhou. Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture: An emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis [J]. Minerals Engineering, 2015, 81: 29–39. Doi: 10.1016/j.mineng.2015.07.015.

    Article  Google Scholar 

  30. WANG Jun, QIU Guan-zhou, QIN Wen-qing, ZHANG Yan-sheng. Microbial leaching of marmatite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(4): 937–942. Doi: 10.1016/sl003-6326(06)60355-5.

    Article  Google Scholar 

  31. BEK R Y, SHURAEVA L I. The effect of sulfide ion chemisorption on the kinetics of gold dissolution in cyanide solutions [J]. Russian Journal of Electrochemistry, 2008, 44(7): 767–771. Doi: 10.1134/sl02319350807001x.

    Article  Google Scholar 

  32. ZHENG J, RITCHIE I M, BROOY S R LA, SINGH P. Study of gold leaching in oxygenated solutions containing cyanide-copper-ammonia using a rotating quartz crystal microbalance [J]. Hydrometallurgy, 1995, 39(1–3): 277–292. Doi: 10.1016/0304-386X(95)00036-G.

    Article  Google Scholar 

  33. YANG Yong-bin. Investigation on electrochemical kinetics and application for co-investigation of gold leaching [D]. Changsha: School of Minerals Processing and Bioengineering, Central South University, 2008. (in Chinese)

    Google Scholar 

  34. LIN H K, CHEN X. Electrochemical study of gold dissolution in cyanide solution [J]. Mining, Metallurgy & Exploration, 2001, 18(3): 147–153. Doi: 10.1007/BF03402888

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang  (杨玮).

Additional information

Foundation item: Project(51474169) supported by the National Natural Science Foundation of China; Project(18JS061) supported by the Key Laboratory Research Project of Education Department in Shaanxi Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhang, K., Wang, Yp. et al. Dissolution of gold in chalcopyrite-containing cyanide solutions. J. Cent. South Univ. 27, 1495–1502 (2020). https://doi.org/10.1007/s11771-020-4385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4385-z

Keywords

关键词

Navigation