Skip to main content
Log in

Investigation on seismic response of a three-stage soil slope supported by anchor frame structure

锚杆框架结构支护三级边坡的地震响应特性研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic responses of three-stage soil slope and frame structure were studied by performing a series of bidirectional Wenchuan motions in terms of the failure mode of three-stage structure, the acceleration of soil slope, the displacement of frame structure, and the anchor stress of frame structure. The response accelerations in both horizontal and vertical directions are the most largely amplified at the slope top of each stage subjected to different shaking cases. The platforms among the stages reduce the amplification effect of response acceleration. The residual displacement of frame structure increases significantly as the intensity of shaking case increases. The frame structure at each stage presents a combined displacement mode consisting of a translation and a rotation around the vertex. The anchor stress of frame structure is mainly increased by the first intense pulse of Wenchuan seismic wave, and it is sensitive to the intensity of shaking case. The anchor stress of frame structure at the first stage is the most considerably enlarged by earthquake loading.

摘要:

结合某工程实践中的典型边坡原型,基于FLAC3D 代码建立了锚杆框架结构支护三级土坡的数 值模型。 通过施加一系列双向汶川地震动激励, 研究三级土坡和锚杆框架结构的动力响应,获得了三 级结构的破坏状态、土坡的加速度响应、框架结构的位移响应以及锚杆轴向应力。 在不同的激励工况 下, 每级边坡顶面的水平和垂直加速度响应均最大。 各级土坡间设置的平台减少了加速度响应的放大 效应。 随着地震动强度的增加, 框架结构的地震残余位移显著增加。 每一级框架结构呈现出平移及绕 顶部旋转的组合位移模式。 框架结构的锚杆轴向应力在汶川地震动激励的第一个振动强烈时段显著增 加, 且对地震动强度敏感。 地震荷载作用下第一级框架结构的锚杆轴向应力增幅最为显著。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SUN Ping, LI Rong-jian, JIANG Hao, IGWE O, SHI Ju-song. Earthquake-triggered landslides by the 1718 Tongwei earthquake in Gansu province, northwest China [J]. Bulletin of Engineering Geology and the Environment, 2017, 76(4): 1281–1295. DOI: https://doi.org/10.1007/s10064-016-0949-4.

    Article  Google Scholar 

  2. XU Chong, XU Xi-wei, SHYU J B H. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013 [J]. Geomorphology, 2015, 248: 77–92. DOI: https://doi.org/10.1016/j.geomorph.2015.07.002.

    Article  Google Scholar 

  3. LING H I, LESHCHINSKY D, CHOU N N S. Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls and slopes during the Ji-Ji earthquake of Taiwan [J]. Soil Dynamics and Earthquake Engineering, 2001, 21(4): 297–313. DOI: https://doi.org/10.1016/S0267-7261(01)00011-2.

    Article  Google Scholar 

  4. ZHANG Jian, QU Hong-lue, LIAO Yi, MA Yao-xin. Seismic damage of earth structures of road engineering in the 2008 Wenchuan earthquake [J]. Environmental Earth Sciences, 2012, 65(4): 987–993. DOI: https://doi.org/10.1007/s12665-011-1519-5.

    Article  Google Scholar 

  5. HACK R, ALKEMA D, KRUSE G, LEENDERS N, LUZI L. Influence of earthquakes on the stability of slopes [J]. Engineering Geology, 2007, 91(1): 4–15. DOI: https://doi.org/10.1016/j.enggeo.2006.12.016.

    Article  Google Scholar 

  6. WU Zhi-jian, WANG Lan-min, WANG Ping, CHEN Tuo, SHI Hang, YANG Xiao-peng. Influence of site conditions on ground motion at far field loess sites during strong earthquake [J]. Journal of Central South University, 2013, 20(8): 2333–2341. DOI: https://doi.org/10.1007/s11771-013-1741-2.

    Article  Google Scholar 

  7. LI Xin-po, WU Yong, HE Si-ming. Seismic stability analysis of gravity retaining walls [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 875–878. DOI: https://doi.org/10.1016/j.soildyn.2010.04.005.

    Article  Google Scholar 

  8. XU Jing-shu, YANG Xiao-li. Seismic and static stability analysis for 3D reinforced slope in nonhomogeneous and anisotropic soils [J]. International Journal of Geomechanics, 2018, 18(7): 04018065. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001177.

    Article  Google Scholar 

  9. LIN Yu-liang, YANG Guo-lin, LI Yun, ZHAO Lian-heng. Engineering behaviors of reinforced gabion retaining wall based on laboratory test [J]. Journal of Central South University of Technology, 2010, 17(6): 1351–1356. DOI: https://doi.org/10.1007/s11771-010-0641-y.

    Article  Google Scholar 

  10. CHEN R H, CHIU Y M. Model tests of geocell retaining structures [J]. Geotextiles and Geomembranes, 2008, 26(1): 56–70. DOI: https://doi.org/10.1016/j.geotexmem.2007.03.001.

    Article  MathSciNet  Google Scholar 

  11. LI J, THAM L G, JUNAIDEEN S M, YUE Z Q, LEE C F. Loose fill slope stabilization with soil nails: Full-scale test [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(3): 277–288. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(277).

    Article  Google Scholar 

  12. CHEHADE H A, DIAS D, SADEK M, JENCK O, CHEHADE F H. Seismic analysis of geosynthetic-reinforced retaining wall in cohesive soils [J]. Geotextiles and Geomembranes, 2019, 47(3): 315–326. DOI: https://doi.org/10.1016/j.geotexmem.2019.02.003.

    Article  Google Scholar 

  13. SEED H B. Considerations in the earthquake resistant design of earth and rock fill dams [J]. Geotechnique, 1979, 29(3): 215–263.

    Article  Google Scholar 

  14. ABOUZAR S. Pseudo-static lateral earth pressures on broken-back retaining walls [J]. Canadian Geotechnical Journal, 2010, 47(11): 1247–1258. DOI: https://doi.org/10.1139/T10-025.

    Article  Google Scholar 

  15. RANJBAR A, KARKANAKI N, GANJIAN F A. Pseudo-static analysis of cantilever retaining walls using upper bound limit analysis approach [J]. Journal of Central South University, 2019, 26(1): 241–255. DOI: https://doi.org/10.1007/s11771-019-3997-7.

    Article  Google Scholar 

  16. LIN Yu-liang, LENG Wu-ming, YANG Guo-lin, ZHAO Lian-heng, LI Liang, YANG Jun-sheng. Seismic active earth pressure of cohesive-frictional soil on retaining wall based on a slice analysis method [J]. Soil Dynamics and Earthquake Engineering, 2015, 70: 133–147. DOI: https://doi.org/10.1016/j.soildyn.2014.12.006.

    Article  Google Scholar 

  17. LIN Yu-liang, YANG Xiao, YANG Guo-lin, LI Yun, ZHAO Lian-heng. A closed-form solution for seismic passive earth pressure behind a retaining wall supporting cohesive-frictional backfill [J]. Acta Geotechnica, 2017, 12(2): 453–461. DOI: https://doi.org/10.1007/s11440-016-0472-6.

    Article  Google Scholar 

  18. BAKER R, SHUKHA R, OPERSTEIN V, FRYDMAN S. Stability charts for pseudo-static slope stability analysis [J]. Soil Dynamics and Earthquake Engineering, 2006, 26(9): 813–823. DOI: https://doi.org/10.1016/j.soildyn.2006.01.023.

    Article  Google Scholar 

  19. GHOSH S, SHAMRMA R. Pseudo-dynamic active response of non-vertical retaining wall supporting c-ψ backfill [J]. Geotechnical and Geological Engineering, 2010, 28(5): 633–641. DOI: https://doi.org/10.1007/s10706-010-9321-9.

    Article  Google Scholar 

  20. GHOSH P. Seismic vertical uplift capacity of horizontal strip anchors using pseudo-dynamic approach [J]. Computers and Geotechnics, 2009, 36(1, 2): 342–351. DOI: https://doi.org/10.1016/j.compgeo.2008.01.002.

    Article  Google Scholar 

  21. GHOSH P. Seismic active earth pressure behind a nonvertical retaining wall using pseudo-dynamic analysis [J]. Canadian Geotechnical Journal, 2008, 45(1): 117–123. DOI: https://doi.org/10.1139/T07-071.

    Article  Google Scholar 

  22. HE Si-ming, OUYANG Chao-jun, LUO Yu. Seismic stability analysis of soil nail reinforced slope using kinematic approach of limit analysis [J]. Environmental Earth Sciences, 2011, 66(1): 319–326. DOI: https://doi.org/10.1007/s12665-011-1241-3.

    Article  Google Scholar 

  23. YAN Min-jia, XIA Yuan-you, LIU Ting-ting, BOWA V M. Limit analysis under seismic conditions of a slope reinforced with prestressed anchor cables [J]. Computer and Geotechnics, 2019, 108: 226–223. DOI: https://doi.org/10.1016/j.compgeo.2018.12.027.

    Article  Google Scholar 

  24. NEWMARK N M. Effects of earthquakes on dams and embankment: Fifth Rankine lecture [J]. Geotechnique, 1965, 25(2): 139–159.

    Article  Google Scholar 

  25. MICHALOWSKI R L. Displacements of multiblock geotechnical structures subjected to seismic excitation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(11): 1432–1439. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1432).

    Article  Google Scholar 

  26. LIN Yu-liang. Deformation behavior of reinforced embankment slopes under seismic excitation [J]. Disaster Advances, 2013, 6(7): 12–19.

    Google Scholar 

  27. LEE K Z Z, CHANG N Y, KO H Y. Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking [J]. Geotextiles and Geomembranes, 2010, 28(4): 317–334. DOI: https://doi.org/10.1016/j.geotexmem.2009.09.008.

    Article  Google Scholar 

  28. WANG L, CHEN S, GAO P. Research on seismic internal forces of geogrids in reinforced soil retaining wall structures under earthquake actions [J]. Journal of Vibroengineering, 2014, 16(4): 2023–2034

    Google Scholar 

  29. WILSON P, ELGAMAL A. Large-scale passive earth pressure load-displacement tests and numerical simulation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1634–1643. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000386.

    Article  Google Scholar 

  30. LIN Yu-liang, LI Ying-xin, YANG Guo-lin, LI Yun. Experimental and numerical study on the seismic behavior of anchoring frame beam supporting soil slope on rock mass [J]. Soil Dynamics and Earthquake Engineering, 2017, 98: 12–23. DOI: https://doi.org/10.1016/j.soildyn.2017.04.008.

    Article  Google Scholar 

  31. LIN Yu-liang, YANG Guo-lin, YANG Xiao, ZHAO Lian-heng, SHEN Quan, QIU Ming-ming. Response of gravity retaining wall with anchoring frame beam supporting a steep rock slope subjected to earthquake loading [J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 633–649. DOI: https://doi.org/10.1016/j.soildyn.2016.11.002

    Article  Google Scholar 

  32. LIN Yu-liang, CHENG Xue-ming, YANG Guo-lin. Shaking table test and numerical simulation on a combined retaining structure response to earthquake loading [J]. Soil Dynamics and Earthquake Engineering, 2018, 108: 29–45. DOI: https://doi.org/10.1016/j.soildyn.2018.02.008.

    Article  Google Scholar 

  33. LIN Yu-liang, CHENG Xue-ming, YANG Guo-lin. Seismic response of a sheet-pile wall with anchoring frame beam by numerical simulation and shaking table test [J]. Soil Dynamics and Earthquake Engineering, 2018, 118: 352–364. DOI: https://doi.org/10.1016/j.soildyn.2018.07.028.

    Article  Google Scholar 

  34. LIN Yu-liang, LU Li, YANG Guo-lin. Seismic behavior of a single-form lattice anchoring structure and a combined retaining structure supporting soil slope: A comparison [J]. Environmental Earth Sciences, 2020, 79(3): 78. DOI: https://doi.org/10.1007/s12665-020-8817-8.

    Article  Google Scholar 

  35. YE Hai-lin, HUANG Run-qiu, ZHENG Ying-ren, DU Xiu-li, Li An-hong. Sensitivity analysis of parameters for bolts in rock slopes under earthquakes [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1374–1379. (in Chinese)

    Google Scholar 

  36. YAZDANDOUST M. Laboratory evaluation of dynamic behavior of steel-strip mechanically stabilized earth walls [J]. Soils and Foundations, 2018, 58(2): 264–276. DOI: https://doi.org/10.1016/j.sandf.2018.02.016.

    Article  Google Scholar 

  37. LEE K Z Z, CHANG N Y, KO H Y. Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking [J]. Geotextiles and Geomembranes, 2010, 28(4): 317–334. DOI: https://doi.org/10.1016/j.geotexmem.2009.09.008.

    Article  Google Scholar 

  38. LIN Yu-liang, SHI Feng, YANG Xiao, YANG Guo-lin, LI Li-min. Numerical analysis on seismic behavior of railway earth embankment: A case study [J]. Journal of Central South University, 2016, 23(4): 906–918. DOI: https://doi.org/10.1007/s11771-016-3138-5.

    Article  Google Scholar 

  39. LIN Yu-liang, YANG Guo-lin. Dynamic behavior of railway embankment slope subjected to seismic excitation [J]. Natural Hazards, 2013, 69(1): 219–235. DOI: https://doi.org/10.1007/s11069-013-0701-3.

    Article  Google Scholar 

  40. LIN Yu-liang, LENG Wu-ming, YANG Guo-lin, LI Liang, YANG Jun-sheng. Seismic response of embankment slopes with different reinforcing measures in shaking table tests [J]. Natural Hazards, 2015, 76(2): 791–810. DOI: https://doi.org/10.1007/s11069-014-1517-5.

    Article  Google Scholar 

  41. HUANG C C, HORNG J C, CHANG W J, CHUEH S Y, CHIOU J S, CHEN C H. Dynamic behavior of reinforced slopes: horizontal acceleration response [J]. Geosynthetics International, 2010, 17(4): 207–219. DOI: https://doi.org/10.1680/gein.2010.17.4.207.

    Article  Google Scholar 

  42. LIN Yu-liang, ZHAO Lian-heng, YANG T Y, YANG Guo-lin, CHEN Xiao-bin. Investigation on seismic behavior of combined retaining structure with different rock shapes [J]. Structural Engineering and Mechanics, 2020, 73(5): 599–612. DOI: https://doi.org/10.12989/sem.2020.73.5.599.

    Google Scholar 

  43. WANG Li-ping, ZHANG Ga. Centrifuge model test study on pile reinforcement behavior of cohesive soil slopes under earthquake conditions [J]. Landslides, 2013, 11(2): 213–223. DOI: https://doi.org/10.1007/s10346-013-0388-2.

    Article  Google Scholar 

  44. YANG B, LUO Y, JENG D S, FENG J. Effects of moisture content on the dynamic response and failure mode of unsaturated soil slope subjected to seismic load [J]. Bulletin of the Seismological Society of America, 2019, 109(2): 489–504. DOI: https://doi.org/10.1785/0120180222.

    Article  Google Scholar 

  45. LIN Yu-liang. Shaking table modeling of embankment slope response to earthquake loading [J]. Disaster Advances, 2013, 6(12): 69–77.

    Google Scholar 

  46. FAN G, ZHANG J J, WU J B, YAN KM. Dynamic response and dynamic failure mode of a weak intercalated rock slope using a shaking table [J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3243–3256. DOI: https://doi.org/10.1007/s00603-016-0971-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-liang Lin  (林宇亮) or Lian-heng Zhao  (赵炼恒).

Additional information

Foundation item: Projects(51878667, 51678571) supported by the National Natural Science Foundation of China; Project(2018zzts657) supported by the Central South University Postgraduates’ Innovation, China; Project(2018JJ2517) supported by the Hunan Provincial Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Yl., Li, Yx., Zhao, Lh. et al. Investigation on seismic response of a three-stage soil slope supported by anchor frame structure. J. Cent. South Univ. 27, 1290–1305 (2020). https://doi.org/10.1007/s11771-020-4367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4367-1

Key words

关键词

Navigation