Skip to main content
Log in

Effect of obstruction on thermal performance of solar water heaters

遮挡对太阳能热水器热性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Solar water heaters (SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is unclear yet. In this study, we present a numerical evaluation on thermal performance of façade-installed SWH under three typical obstructed scenarios, based on various levels of sunshine duration. This study is carried out for four locations with various latitudes across China. Thermal performance is measured by solar fraction for annual and monthly evaluation. The results show that the obstruction can seriously degrade annual solar fraction of SWH, even in the 4-hour sunshine duration scenario, for all the studied locations. Interestingly, only lengthening sunshine duration in the standard day (e.g., from 2 h to 4 h) may not result in increasing annual solar fraction markedly. In terms of the monthly performance, solar fraction in January and December decreases significantly, while from May to August it just declines slightly, except for Guangzhou having a swift reduction. This study can provide insights into the behavior and promote the appropriate application of SWH in urban areas.

摘要

太阳能热水器由于在减少能源消耗和温室气体排放方面的优势而被广泛应用于城市地区, 但是, 建筑遮挡对其热性能的影响尚不清楚。本文选取中国4 个纬度不同的地区(哈尔滨、北京、长沙和广 州), 分别对三种典型遮挡情形下立面安装太阳能热水器的热性能进行了对比研究。 遮挡情形利用日 照持续时间来进行定义。 热性能采用太阳能保证率来进行评价。 结果表明, 对于所有研究地点, 即使 在4 h 日照持续时间情况下, 遮挡也会严重降低年太阳能保证率; 而且仅延长标准日的日照时间 (例如 从2 h 延长至4 h) 可能不会明显提升年太阳能保证率。 而对于每月热性能而言,遮挡会引起1 月和 12 月的太阳能保证率显著下降, 除广州外的3 个城市5 月至8 月的太阳能保证率仅略有下降,而广州 的太阳能保证率迅速下降。 本研究阐明了遮挡环境下太阳能热水器的运行特性, 有利于促进其在城市 建筑中的合理应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d r :

Distance ratio

ΔH :

Height difference between the bottom of collector and the top edge of obstructing building, m

f :

Solar fraction

h :

Height above the ground of the bottom of collector, m

H :

Height of the building, m

W 0 :

Annual energy consumption using conventional water heater, kW·h

W SWH :

Annual energy consumption by SWH, kW·h

S :

Horizontal distance between obstructing and obstructed building, m

W :

Width of obstructing building, m

w r :

Width radio

References

  1. LIU G, LI M, ZHOU B, CHEN Y, LIAO S. General indicator for techno-economic assessment of renewable energy resources [J]. Energy Conversion and Management, 2018, 156: 416–426. DOI: https://doi.org/10.1016/j.enconman.2017.11.054.

    Google Scholar 

  2. KAMMEN D M, SUNTER D A. City-integrated renewable energy for urban sustainability [J]. Science, 2016, 352(6288): 922–928. DOI: https://doi.org/10.1126/science.aad9302.

    Google Scholar 

  3. YOO J H. Evaluation of solar hot water heating system applications to high-rise multi-family housing complex based on three years of system operation [J]. Energy and Buildings, 2015, 101: 54–63. DOI: https://doi.org/10.1016/j.enbuild.2015.04.037.

    Google Scholar 

  4. YILMAZ İ H. Residential use of solar water heating in Turkey: A novel thermo-economic optimization for energy savings, cost benefit and ecology [J]. Journal of Cleaner Production, 2018, 204: 511–524. DOI: https://doi.org/10.1016/j.jclepro.2018.09.060.

    Google Scholar 

  5. HE G, ZHENG Y, WU Y, CUI Z, QIAN K. Promotion of building-integrated solar water heaters in urbanized areas in China: Experience, potential, and recommendations [J]. Renewable and Sustainable Energy Reviews, 2015, 42: 643–656. DOI: https://doi.org/10.1016/j.rser.2014.10.044.

    Google Scholar 

  6. LI D, LIU G, LIAO S. Solar potential in urban residential buildings [J]. Solar Energy, 2015, 111: 225–235. DOI: https://doi.org/10.1016/j.solener.2014.10.045.

    Google Scholar 

  7. LIANG R, ZHANG J, ZHAO L, MA L. Performance enhancement of filled-type solar collector with U-tube [J]. Journal of Central South University, 2015, 22(3): 1124–1131. DOI: https://doi.org/10.1007/s11771-015-2624-5.

    Google Scholar 

  8. SHAFIEIAN A, KHIADANI M, NOSRATI A. Thermal performance of an evacuated tube heat pipe solar water heating system in cold season [J]. Applied Thermal Engineering, 2019, 149: 644–657. DOI: 10.1016/j.applthermaleng.2018.12.078.

    Google Scholar 

  9. SOULIOTIS M, PANARAS G, FOKAIDES P A, PAPAEFTHIMIOU S, KALOGIROU S A. Solar water heating for social housing: Energy analysis and life cycle assessment [J]. Energy and Buildings, 2018, 169: 157–171. DOI: https://doi.org/10.1016/j.enbuild.2018.03.048.

    Google Scholar 

  10. LI R, DAI Y, WANG R. Experimental investigation and simulation analysis of the thermal performance of a balcony wall integrated solar water heating unit [J]. Renewable Energy, 2015, 75: 115–122. DOI: https://doi.org/10.1016/j.renene.2014.09.023.

    Google Scholar 

  11. NAZARI M A, AHMADI M H, SADEGHZADEH1 M, SHAFII M B, GOODARZI M. A review on application of nanofluid in various types of heat pipes [J]. Journal of Central South University, 2019, 26(5): 1021–1041. DOI: https://doi.org/10.1007/s11771-019-4068-9.

    Google Scholar 

  12. AYDIN E, EICHHOLTZ P, YÖNDER E. The economics of residential solar water heaters in emerging economies: The case of Turkey [J]. Energy Economics, 2018, 75: 285–299. DOI: https://doi.org/10.1016/j.eneco.2018.08.001.

    Google Scholar 

  13. MICHAEL J J, SELVARASAN I. Economic analysis and environmental impact of flat plate roof mounted solar energy systems [J]. Solar Energy, 2017, 142: 159–170. DOI: https://doi.org/10.1016/j.solener.2016.12.019.

    Google Scholar 

  14. UCTUG F G, AZAPAGIC A. Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions [J]. Science of the Total Environment, 2018, 622–623: 1202–1216. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.057.

    Google Scholar 

  15. KYRIAKI E, GIAMA E, PAPADOPOULOU A, DROSOU V, PAPADOPOULOS A M. Energy and environmental performance of solar thermal systems in hotel buildings [J]. Procedia Environmental Sciences, 2017, 38: 36–43. DOI: https://doi.org/10.1016/j.proenv.2017.03.072.

    Google Scholar 

  16. COLMENAR-SANTOS A, VALE-VALE J, BORGE-DIEZ D, REQUENA-PEREZ R. Solar thermal systems for high rise buildings with high consumption demand: Case study for a 5 star hotel in Sao Paulo, Brazil [J]. Energy and Buildings, 2014, 69: 481–489. DOI: https://doi.org/10.1016/j.enbuild.2013.11.036.

    Google Scholar 

  17. HE Z. Solar water heating systems applied in high-rise residential buildings in China [J]. Energy Procedia, 2016, 91: 408–414. DOI: https://doi.org/10.1016/j.egypro.2016.06.278.

    Google Scholar 

  18. MUNARI PROBST M C, ROECKER C. Criteria and policies to master the visual impact of solar systems in urban environments: The LESO-QSV method [J]. Solar Energy, 2019, 184: 672–687. DOI: https://doi.org/10.1016/j.solener.2019.03.031.

    Google Scholar 

  19. FLORIO P, MUNARI PROBST M C, SCHÜLER A, ROECKER C, SCARTEZZINI J. Assessing visibility in multi-scale urban planning: A contribution to a method enhancing social acceptability of solar energy in cities [J]. Solar Energy, 2018, 173: 97–109. DOI: https://doi.org/10.1016/j.solener.2018.07.059.

    Google Scholar 

  20. KALOGIROU S A. Building integrated solar thermal systems-A new era of renewables in buildings [J]. Bulgarian Chemical Communications, 2016, 48: 102–108. http://www.bcc.bas.bg/BCC_Volumes/Volume_48_Special_E_2016/Special%20Issue%20E/Statii/Pages102-108.pdf.

    Google Scholar 

  21. VISA I, MOLDOVAN M, COMSIT M, NEAGOE M, DUTA A. Facades integrated solar-thermal collectors-challenges and solutions [J]. Energy Procedia, 2017, 112: 176–185. DOI: https://doi.org/10.1016/j.egypro.2017.03.1080.

    Google Scholar 

  22. MA W, XUE X, LIU G. Techno-economic evaluation for hybrid renewable energy system: Application and merits [J]. Energy, 2018, 159: 385–409. DOI: https://doi.org/10.1016/j.energy.2018.06.101.

    Google Scholar 

  23. CHOW T T, FONG K F, CHAN A L S, LIN Z. Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong [J]. Applied Energy, 2006, 83(1): 42–54. DOI: https://doi.org/10.1016/j.apenergy.2005.01.006.

    Google Scholar 

  24. SHI J, SU W, ZHU M, CHEN H, PAN Y, WAN S, WANG Y. Solar water heating system integrated design in high-rise apartment in China [J]. Energy and Buildings, 2013, 58: 19–26. DOI: https://doi.org/10.1016/j.enbuild.2012.10.018.

    Google Scholar 

  25. The Ministry of Construction of China. GB 50364-2005, Technical code for solar water heating system for civil buildings [S]. Beijing, China: China Architecture and Building Press, 2005. (in Chinese)

    Google Scholar 

  26. LI D, LIAO S. An integrated approach to evaluate the performance of solar water heater in the urban environment [J]. Energy and Buildings, 2014, 69: 562–571. DOI: https://doi.org/10.1016/j.enbuild.2013.11.044.

    Google Scholar 

  27. China National Engineering Research Center for Human Settlements. Integration design for solar water heating system in dwelling [M]. Beijing: China Architecture and Building Press, 2006. (in Chinese)

    Google Scholar 

  28. The Ministry of Construction of China. GB 50180-93, Code of urban residential areas planning and design (Ver. 2002) [S]. Beijing, China: China Architecture and Building Press, 2002. (in Chinese)

    Google Scholar 

  29. DUFFIE J A, BECKMAN W A. Solar Engineering of Thermal Processes [M]. 4th Edition. New York: John Wiley & Sons, Inc, 2013.

    Google Scholar 

  30. ROBINSON D, HALDI F, KÄMPF J, LEROUX P, PEREZ D, RASHEED A, WILKE U. CitySim: comprehensive micro-simulation of resource flows for sustainable urban planning [C]// Proc of CISBAT 2009. Lausanne, Switzerland, 2009: 1083–1090.

    Google Scholar 

  31. TRNSYS 16. A transient system simulation program [M]. Solar Energy Laboratory, University of Wisconsin-Madison, 2006.

  32. ROBINSON D, STONE A. Solar radiation modelling in the urban context [J]. Solar Energy, 2004, 77(3): 295–309. DOI: https://doi.org/10.1016/j.solener.2004.05.010.

    Google Scholar 

  33. ROBINSON D, STONE A. A simplified radiosity algorithm for general urban radiation exchange [J]. Building Services Engineering Research and Technology, 2005, 26(4): 271–284. DOI: https://doi.org/10.1191/0143624405bt133oa.

    Google Scholar 

  34. SHRIVASTAVA R L, VINOD KUMAR, UNTAWALE S P. Modeling and simulation of solar water heater: A TRNSYS perspective [J]. Renewable and Sustainable Energy Reviews, 2017, 67: 126–143. DOI: https://doi.org/10.1016/j.rser.2016.09.005.

    Google Scholar 

  35. China Meteorological Bureau and Tsinghua University. China standard weather data for analyzing building thermal conditions [M]. Beijing: China Architecture and Building Press, 2005. (in Chinese)

    Google Scholar 

  36. Natural Resources Canada. WATSUN 2009 [EB/OL]. [2019-07-20]. https://web.archive.org/web/20150415164654/http://www.nrcan.gc.ca/energy/software-tools/7435.

  37. KALOGIROU S A. Solar energy engineering processes and systems second edition [M]. Amsterdam: Elsevier, 2014.

    Google Scholar 

  38. GEMMELL W L, CHANDRASHEKAR M, VANOLL K H. Detailed modeling of evacuated collector systems, a report of task VI: The performance of solar heating, cooling, and hot water systems using evacuated collectors [R]. IEA-SHAC-TVI-6, IEA Solar Heating & Cooling Programme, 1986.

  39. PEREZ R, STEWART R, SEALS R, GUERTIN T. The development and verification of the perez diffuse radiation model [R]. Sandia Report SAND88-7030, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-peng Li  (李大鹏).

Additional information

Foundation item: Projects(2017JJ3517, 2017JJ3090) supported by the Natural Science Foundation of Hunan Province, China; Project(2018NK2066) supported by the Key Research and Development Program of Hunan Province, China; Project(QJ2017007B) supported by the Youth Scientific Research Foundation of Central South University of Forestry and Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Dp., Wang, Yf., Liu, G. et al. Effect of obstruction on thermal performance of solar water heaters. J. Cent. South Univ. 27, 1273–1289 (2020). https://doi.org/10.1007/s11771-020-4366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4366-2

Key words

关键词

Navigation