Skip to main content
Log in

Hydrogen generation from methanol reforming for fuel cell applications: A review

应用于燃料电池的甲醇重整制氢研究综述

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an overview of state-of-the-art investigations on methanol reforming is critically summarized, including the detailed introduction of methanol conversion pathways from the perspective of fuel cell applications, various advanced materials design for catalytic methanol conversion, as well as the development of steam methanol reformers. For the section of utilization pathways, reactions such as steam reforming of methanol, partial oxidation of methanol, oxidative steam reforming of methanol, and sorption-enhanced steam methanol reforming were elaborated; For the catalyst section, the strategies to enhance the catalytic activity and other comprehensive performances were summarized; For the reactor section, the newly designed steam methanol reformers were thoroughly described. This review will benefit researchers from both fundamental research and fuel cell applications in the field of catalyzing methanol to hydrogen.

摘要

甲醇液体燃料具有运输方便、能量密度高、转化温度低等优势,可作为氢能载体实时产氢并供 给燃料电池。论文围绕最新甲醇重整制氢技术展开了详细的介绍,具体内容包括甲醇转化途径概述、 甲醇转化催化剂研究进展与开发思路总结以及甲醇蒸汽重整微型反应器发展概述。甲醇转化途径部分 对甲醇蒸汽重整、甲醇部分氧化、甲醇氧化重整以及吸附增强式甲醇重整反应进行了详细阐述; 催化 剂部分总结了近年来的催化剂发展趋势并给出了提高催化剂活性的方法与设计思路; 甲醇重整微反应 器部分,对新开发的蒸汽甲醇重整器进行了全面介绍。本篇综述对近5 年来的甲醇重整制氢技术进行 了总结梳理并给出了未来发展趋势,为甲醇氢载体供给燃料电池的理论研究与燃料电池应该提供参考 依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MU Z L, BU S C, XUE B. Environmental legislation in china: Achievements, challenges and trends [J]. Sustainability, 2014, 6(12): 8967–8979. DOI: https://doi.org/10.3390/su6128967.

    Article  Google Scholar 

  2. ZHANG J, XIANG Y, LU S F, JIANG S P. High temperature polymer electrolyte membrane fuel cells for integrated fuel cell-methanol reformer power systems: A critical review [J]. Advanced Sustainable Systems, 2018, 2: 8–9. DOI: https://doi.org/10.1002/adsu.201700184.

    Google Scholar 

  3. HOSSEINI S S, MEHRPOOYA M, ALSAGRI A S, ALROBAIAN A A. Introducing, evaluation and exergetic performance assessment of a novel hybrid system composed of MCFC, methanol synthesis process, and a combined power cycle [J]. Energy Conversion and Management, 2019, 197: 111878. DOI: https://doi.org/10.1016/j.enconman.2019.111878.

    Article  Google Scholar 

  4. MEHRPOOYA M, SADEGHZADEH M, RAHIMI A, POURIMAN M. Technical performance analysis of a combined cooling heating and power (CCHP) system based on solid oxide fuel cell (SOFC) technology—A building application [J]. Energy Conversion and Management, 2019, 198: 111767. DOI: https://doi.org/10.1016/j.enconman.2019.06.078.

    Article  Google Scholar 

  5. WANG J L, WANG H F, HU P. Theoretical insight into methanol steam reforming on indium oxide with different coordination environments [J]. Science China: Chemistry, 2018, 61(3): 336–343. DOI: https://doi.org/10.1007/s11426-017-9139-x.

    Article  Google Scholar 

  6. KAFTAN A, KUSCHE M, LAURIN M, WASSERSCHEID P, LIBUDA J. KOH-promoted Pt/Al2O3 catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study [J]. Applied Catalysis B: Environmental, 2017, 201: 169–181. DOI: https://doi.org/10.1016/j.apcatb.2016.08.016.

    Article  Google Scholar 

  7. MCNICOL B D, RAND D A J, WILLIAMS K R. Fuel cells for road transportation purposes—Yes or no [J]? Journal of Power Sources, 2001, 100(1): 47–59. DOI: https://doi.org/10.1016/S0378-7753(01)00882-5.

    Article  Google Scholar 

  8. RIBEIRINHA P, MATEOS P C, BOAVENTURA M, SOUSA J, MENDES A. CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: Synthesis, characterization and kinetic model [J]. Applied Catalysis B: Environmental, 2018, 221: 371–379. DOI: https://doi.org/10.1016/j.apcatb.2017.09.040.

    Article  Google Scholar 

  9. SILVA H, MATEOS P C, RIBEIRINHA P, BOAVENTURA M, MENDES A. Low-temperature methanol steam reforming kinetics over a novel CuZrDyAl catalyst [J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115(1): 321–339. DOI: https://doi.org/10.1007/s11144-015-0846-z.

    Article  Google Scholar 

  10. SA S, SILVA H, BRANDAO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review [J]. Applied Catalysis B: Environmental, 2010, 99(1, 2): 43–57. DOI: https://doi.org/10.1016/j.apcatb.2010.06.015.

    Article  Google Scholar 

  11. MIERCZYNSKI P, VASILEV K, MIERCZYNSKA A, MANIUKIEWICZ W, SZYNKOWSKA M I, MANIECKI T P. Bimetallic Au-Cu, Au-Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol [J]. Applied Catalysis B: Environmental, 2016, 185: 281–294. DOI: https://doi.org/10.1016/j.apcatb.2015.11.047.

    Article  Google Scholar 

  12. MATEOS P C, SILVA H, TANAKA D A P, LIGUORI S, LULIANELLI A, BASILE A, MENDES A. CuO/ZnO catalysts for methanol steam reforming: The role of the support polarity ratio and surface area [J]. Applied Catalysis B: Environmental, 2015, 174: 67–76. DOI: https://doi.org/10.1016/j.apcatb.2015.02.039.

    Article  Google Scholar 

  13. WANG C Y, BOUCHER M, YANG M, SALTSBURG H, FLYTZANI S M. ZnO-modified zirconia as gold catalyst support for the low-temperature methanol steam reforming reaction [J]. Applied Catalysis B: Environmental, 2014, 154: 142–152. DOI: https://doi.org/10.1016/j.apcatb.2014.02.008.

    Article  Google Scholar 

  14. ZHANG H, SUN J M, DAGLE V L, HALEVI B, DATYE A K, WANG Y. Influence of ZnO facets on Pd/ZnO catalysts for methanol steam reforming [J]. ACS Catalysis, 2014, 4(7): 2379–2386. DOI: https://doi.org/10.1021/cs500590t.

    Article  Google Scholar 

  15. XU X H, SHUAI K P, XU B. Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen [J]. Catalysts, 2017, 7(6): 183. DOI: https://doi.org/10.3390/catal7060183.

    Article  Google Scholar 

  16. KUBACKA A, FERNANDEZ G M, MARTINEZ A A. Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts [J]. Applied Catalysis A: General, 2016, 518: 2–17. DOI: https://doi.org/10.1016/j.apcata.2016.01.027.

    Article  Google Scholar 

  17. SCHULLER G, VAZQUEZ F V, WAIBLINGER W, AUVINEN S, RIBEIRINHA P. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer [J]. Journal of Power Sources, 2017, 347: 47–56. DOI: https://doi.org/10.1016/j.jpowsour.2017.02.021.

    Article  Google Scholar 

  18. RIBEIRINHA P, SCHULLER G, BOAUENTURA M, MENDES A. Synergetic integration of a methanol steam reforming cell with a high temperature polymer electrolyte fuel cell [J]. International Journal of Hydrogen Energy, 2017, 42(19): 13902–13912. DOI: https://doi.org/10.1016/j.ijhydene.2017.01.172.

    Article  Google Scholar 

  19. THATTARATHODY R, ARTOUL M, DIGILOV R M, SHEINTUCH M. Pressure, diffusion, and S/M ratio effects in methanol steam reforming kinetics [J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3175–3186. DOI: https://doi.org/10.1021/acs.iecr.7b05033.

    Article  Google Scholar 

  20. THATTARATHODY R, SHEINTUCH M. Kinetics and dynamics of methanol steam reforming on CuO/ZnO/alumina catalyst [J]. Applied Catalysis A: General, 2017, 540: 47–56. DOI: https://doi.org/10.1016/j.apcata.2017.04.012.

    Article  Google Scholar 

  21. ÖZCAN O, AKIN A N. Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: An optimization study [J]. International Journal of Hydrogen Energy, 2019, 44(27): 14117–14126. DOI: https://doi.org/10.1016/j.ijhydene.2018.12.211.

    Article  Google Scholar 

  22. WU H W, HSU T T, FAN C M, HE P H. Reduction of smoke, PM2.5, and NOx of a diesel engine integrated with methanol steam reformer recovering waste heat and cooled EGR [J]. Energy Conversion and Management, 2018, 172: 567–578. DOI: https://doi.org/10.1016/j.enconman.2018.07.050.

    Article  Google Scholar 

  23. WANG J J, WU J, XU Z L, LI M. Thermodynamic performance analysis of a fuel cell trigeneration system integrated with solar-assisted methanol reforming [J]. Energy Conversion and Management, 2017, 150: 81–89. DOI: https://doi.org/10.1016/j.enconman.2017.08.012.

    Article  Google Scholar 

  24. HOSSEINI S S, MEHRPOOYA M, ALSAGRI A S, ALROBAIAN A A. Introducing, evaluation and exergetic performance assessment of a novel hybrid system composed of MCFC, methanol synthesis process, and a combined power cycle [J]. Energy Conversion and Management, 2019, 197: 111878. DOI: https://doi.org/10.1016/j.enconman.2019.111878.

    Article  Google Scholar 

  25. SANTACESARIA E, CARRA S. Kinetics of catalytic steam reforming of methanol in a CSTR reactor [J]. Applied Catalysis B: Environmental, 1983, 5: 345–358.

    Article  Google Scholar 

  26. YI N, SI R, SALTSBURG H, FLYTZANI-STEPHANOPOULOS M. Steam reforming of methanol over ceria and gold-ceria nanoshapes [J]. Applied catalysis B: Environmental, 2010, 95: 87–92. DOI: https://doi.org/10.1016/j.apcatb.2009.12.012.

    Article  Google Scholar 

  27. BREEN J P, ROSS J R. Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu-Zn-Al catalysts [J]. Catalysis Today, 1999, 51: 521–533. DOI: https://doi.org/10.1016/S0920-5861(99)00038-3.

    Article  Google Scholar 

  28. SHISHIDO T, YAMAMOTO Y, MORIOKA H, TAKEHIRE K. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming [J]. Journal of Molecular Catalysis A: Chemical, 2007, 268: 185–194. DOI: https://doi.org/10.1016/j.molcata.2006.12.018.

    Article  Google Scholar 

  29. SUN Z X, FANG S Y, LIN Y, HU Y H. Photo-assisted methanol steam reforming on solid solution of Cu-Zn-Ti oxide [J]. Chemical Engineering Journal, 2019, 375: 121909. DOI: https://doi.org/10.1016/j.cej.2019.121909.

    Article  Google Scholar 

  30. CHIARELLO G L, FERRI D, SELLI E. In situ attenuated total reflection infrared spectroscopy study of the photocatalytic steam reforming of methanol on Pt/TiO2 [J]. Applied Surface Science, 2018, 450: 146–154. DOI: https://doi.org/10.1016/j.apsusc.2018.04.167.

    Article  Google Scholar 

  31. SHARMA R, KUMAR A, UPADHYAY R K. Bimetallic Fe-promoted catalyst for CO-free hydrogen production in high-temperature-methanol steam reforming [J]. Chemcatchem, 2019, 11(18): 4568–4580. DOI: https://doi.org/10.1002/cctc.201901062.

    Article  Google Scholar 

  32. HUBER G W, DUMESIC J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery [J]. Catalysis Today, 2006, 111(1): 119–132. DOI: https://doi.org/10.1016/j.cattod.2005.10.010.

    Article  Google Scholar 

  33. SHABAKER J W, DAVDA R R, HUBER G W, CORTRIGHT R D, DUMESIC J A. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts [J]. Journal of Catalysis, 2003, 215(2): 344–352. DOI: https://doi.org/10.1016/S0021-9517(03)00032-0.

    Article  Google Scholar 

  34. DAVDA R R, SHABAKER J W, HUBER G W, CORTRIGHT R D, DUMESIC J A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J]. Applied Catalysis B: Environmental, 2005, 56(1, 2): 171–186. DOI: https://doi.org/10.1016/j.apcatb.2004.04.027.

    Article  Google Scholar 

  35. CORTRIGHT R D, DAVDA R R, DUMESIC J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J]. Nature, 2002, 418(6901): 964–967. DOI: https://doi.org/10.1038/nature01009.

    Article  Google Scholar 

  36. STEKROVA M, RINTA P A, KARINEN R. Hydrogen production via aqueous-phase reforming of methanol over nickel modified Ce, Zr and La oxide supports [J]. Catalysis Today, 2018, 304: 143–152. DOI: https://doi.org/10.1016/j.cattod.2017.08.030.

    Article  Google Scholar 

  37. TAN H, KONG P, LIU M X, GU X M, ZHENG Z F. Enhanced photocatalytic hydrogen production from aqueous-phase methanol reforming over cyano-carboxylic bifunctionally-modified carbon nitride [J]. Chemical Communication, 2019, 55(83): 12503–12506. DOI: https://doi.org/10.1039/c9cc06600d.

    Article  Google Scholar 

  38. LEE K Y, HUANG Y J. Low CO generation on tunable oxygen vacancies of non-precious metallic Cu/ZnO catalysts for partial oxidation of methanol reaction [J]. Applied Catalysis B: Environmental, 2014, 150: 506–514. DOI: https://doi.org/10.1016/j.apcatb.2013.12.044.

    Article  Google Scholar 

  39. WANG Z, XI J, WANG W, LU G. Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2003, 191(1): 123–134. DOI: https://doi.org/10.1016/S1381-1169(02)00352-7.

    Article  Google Scholar 

  40. CUBEIRO M L, FIERRO J L G. Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts [J]. Journal of Catalysis, 1998, 179(1): 150–162.

    Article  Google Scholar 

  41. MO L, ZHENG X, YEH C T. Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures [J]. Chemical Communication, 2004, 4(12): 1426–1427. DOI: https://doi.org/10.1039/b401463d.

    Article  Google Scholar 

  42. KIM J H, JANG Y S, KIM D H. Multiple steady states in the oxidative steam reforming of methanol [J]. Chemical Engineering Journal, 2018, 338: 752–763. DOI: https://doi.org/10.1016/j.cej.2018.01.075.

    Article  Google Scholar 

  43. ESPINOSA L A, LAGO R M, PENA M A, FIERRO J L G. Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/ZnO catalysts [J]. Topics in Catalysis, 2003, 22(3, 4): 245–251. DOI: https://doi.org/10.1023/A:1023663604190.

    Article  Google Scholar 

  44. AGRELL J, BIRGERSSON H, BOUTONNET M, MELIAN-CABRERA I, NAVARRO R M, FRERRO J L G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3 [J]. Journal of Catalysis, 2003, 219(2): 389–403. DOI: https://doi.org/10.1016/s0021-9517(03)00221-5.

    Article  Google Scholar 

  45. AGRELL J, BOUTONNET M, FIERRO J L G. Production of hydrogen from methanol over binary Cu/ZnO catalysts: Part II. Catalytic activity and reaction pathways [J]. Applied Catalysis A: General, 2003, 253(1): 213–223. DOI: https://doi.org/10.1016/S0926-860X(03)00521-0.

    Google Scholar 

  46. AGRELL J, HASSELBO K, JANSSON K, JARAS S G, BOUTONNET M. Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique [J]. Applied Catalysis A: General, 2001, 211(2): 239–250. DOI: https://doi.org/10.1016/S0926-860X(00)00876-0.

    Article  Google Scholar 

  47. CARRAZÁN S R G, WOJCIESZAK R, BLANCO R M, MATEOS P C, RUIZ P. Modulation of the selectivity in partial oxidation of methanol over CuZnAl catalysts by adding CO2 and/or H2 into the reaction feed [J]. Applied Catalysis B: Environmental, 2015, 168: 14–24. DOI: https://doi.org/10.1016/j.apcatb.2014.12.019.

    Article  Google Scholar 

  48. TURCO M, BAGNASCO G, CAMMARANO C, SENESE P, COSTANTINO U, SISANI M. Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix [J]. Applied Catalysis B: Environmental, 2007, 77(1, 2): 46–57. DOI: https://doi.org/10.1016/j.apcatb.2007.07.006.

    Article  Google Scholar 

  49. REITZ T L, CZAPLEWSKI K F, LANG J C, POPP K E, KUNG H H. Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction [J]. Journal of Catalysis, 2001, 199(2): 193–201. DOI: https://doi.org/10.1006/jcat.2000.3141.

    Article  Google Scholar 

  50. SHTYKA O, HIGASHINO Y, KEDZIORA A, DUBKOV S, GROMOV D, MANIECKI T P. Monometallic Ru, Au, and Pt catalysts deposited on carbon nanotubes for oxidative steam reforming of methanol [J]. Fibre Chemistry, 2018, 50(4): 301–305. DOI: https://doi.org/10.1007/s10692-019-09980-9.

    Article  Google Scholar 

  51. SANGEETHA P, CHANG L H, CHEN Y W. Gold catalysts on TiO2 support for preferential oxidation of CO in H2 stream: Effect of base agent [J]. Materials Chemistry and Physics, 2009, 118(1): 181–186. DOI: https://doi.org/10.1016/j.matchemphys.2009.07.022.

    Article  Google Scholar 

  52. KIM D H, KIM J H, JANG Y S, KIM J C. Hydrogen production by oxidative steam reforming of methanol over anodic aluminum oxide-supported Cu-Zn catalyst [J]. International Journal of Hydrogen Energy, 2019, 44(20): 9873–9882. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.009.

    Article  Google Scholar 

  53. GANLEY J C, RIECHMANN K L, SEEBAUER E G, MASEL R I. Porous anodic alumina optimized as a catalyst support for microreactors [J]. Journal of Catalysis, 2004, 227(1): 26–32. DOI: https://doi.org/10.1016/j.jcat.2004.06.016.

    Article  Google Scholar 

  54. POINERN G E J, ALIAND N, FAWCETT D. Progress in nano-engineered anodic aluminum oxide membrane development [J]. Materials, 2011, 4: 487–526. DOI: https://doi.org/10.3390/ma4030487.

    Article  Google Scholar 

  55. LINGA R E, KARUPPIAH J, LEE H C, KIM D H. Steam reforming of methanol over copper loaded anodized aluminum oxide (AAO) prepared through electrodeposition [J]. Journal of Power Sources, 2014, 268: 88–95. DOI: https://doi.org/10.1016/j.jpowsour.2014.05.082.

    Article  Google Scholar 

  56. EAIMSUMANG S, PETCHAKAN S, LUENGNARUEMICHAI A. Dependence of the CeO2 morphology in CuO/CeO2 catalysts for the oxidative steam reforming of methanol [J]. Reaction Kinetics Mechanisms and Catalysis, 2019, 127(2): 669–690. DOI: https://doi.org/10.1007/s11144-019-01570-4.

    Article  Google Scholar 

  57. SUN Z, ZHANG X H, LI H F, LIU T, SANG S E, CHEN S Y, DUAN L B, ZENG L, XIANG W G, GONG J L. Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion [J]. Applied Catalysis B: Environmental, 2020, 269: 118758. DOI: https://doi.org/10.1016/j.apcatb.2020.118758.

    Article  Google Scholar 

  58. WU X, WU S. Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol [J]. Journal of Energy Chemistry, 2015, 24(3): 315–321. DOI: https://doi.org/10.1016/S2095-4956(15)60317-5.

    Article  Google Scholar 

  59. LI M, DURAISWAMY K, KNOBBE M. Adsorption enhanced steam reforming of methanol for hydrogen generation in conjunction with fuel cell: Process design and reactor dynamics [J]. Chemical Engineering Science, 2012, 67(1): 26–33. DOI: https://doi.org/10.1016/j.ces.2011.07.024.

    Article  Google Scholar 

  60. IRURETAGOYENA D, HELLGARDT K, CHADWICK D. Towards autothermal hydrogen production by sorption-enhanced water gas shift and methanol reforming: A thermodynamic analysis [J]. International Journal of Hydrogen Energy, 2018, 43(9): 4211–4222. DOI: https://doi.org/10.1016/j.ijhydene.2018.01.043.

    Article  Google Scholar 

  61. QI T Y C, YANG Y, WU Y J, WANG J, LI P, YU J G. Sorption-enhanced methanol steam reforming for hydrogen production by combined copper-based catalysts with hydrotalcites [J]. Chemical Engineering and Processing-Process Intensification, 2018, 127: 72–82. DOI: https://doi.org/10.1016/j.cep.2018.03.022.

    Article  Google Scholar 

  62. QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming [J]. Chemical Communication, 2018, 54(86): 12242–12245. DOI: https://doi.org/10.1039/c8cc06600k.

    Article  Google Scholar 

  63. ZHENG T Q, ZHOU W, GAO Y, YU W, LIU Y X, ZHANG C Y, ZHENG C C, WAN S L, LIN J D, XIANG J H. Active impregnation method for copper foam as catalyst support for methanol steam reforming for hydrogen production [J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4387–4395. DOI: https://doi.org/10.1021/acs.iecr.8b05241.

    Article  Google Scholar 

  64. WANG S S, SU H Y, GU X K, LI W X. Differentiating intrinsic reactivity of copper, copper-zinc alloy, and copper/zinc oxide interface for methanol steam reforming by first-principles theory [J]. Journal of Physical Chemistry C, 2017, 121(39): 21553–21559. DOI: https://doi.org/10.1021/acs.jpcc.7b07703.

    Article  Google Scholar 

  65. DIAZ P M A, MOYA J, SERRANO R J C, FARIA J. Interplay of support chemistry and reaction conditions on copper catalyzed methanol steam reforming [J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15268–15279. DOI: https://doi.org/10.1021/acs.iecr.8b02488.

    Google Scholar 

  66. SANCHES S G, FLORES J H, DA SILVA M I P. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming [J]. Molecular Catalysis, 2018, 454: 55–62. DOI: https://doi.org/10.1016/j.mcat.2018.05.012.

    Article  Google Scholar 

  67. LEI Y Q, LUO Y M, LI X F, LU J C, MEI Z Q, PENG W, CHEN R, CHEN K Z, CHEN K Z, CHEN D K, HE D D. The role of samarium on Cu/Al2O3 catalyst in the methanol steam reforming for hydrogen production [J]. Catalysis Today, 2018, 307: 162–168. DOI: https://doi.org/10.1016/j.cattod.2017.05.072.

    Article  Google Scholar 

  68. LIU X Y, TOYIR J, de la PISCINA P R, HOMS N. Hydrogen production from methanol steam reforming over Al2O3- and ZrO2-modified CuOZnOGa2O3 catalysts [J]. International Journal of Hydrogen Energy, 2017, 42(19): 13704–13711. DOI: https://doi.org/10.1016/j.ijhydene.2016.12.133.

    Article  Google Scholar 

  69. AZENHA C S R, MATEOS PEDRERO C, QUEIROS S, CONCEPCION P, MENDES A. Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming [J]. Applied Catalysis B: Environmental, 2017, 203: 400–407. DOI: https://doi.org/10.1016/j.apcatb.2016.10.041.

    Article  Google Scholar 

  70. SAIDI M. Performance assessment and evaluation of catalytic membrane reactor for pure hydrogen production via steam reforming of methanol [J]. International Journal of Hydrogen Energy, 2017, 42(25): 16170–16185. DOI: https://doi.org/10.1016/j.ijhydene.2017.05.130.

    Article  Google Scholar 

  71. PU Y C, LI S R, YAN S, HUANG X, WANG D, YE Y Y, LIU Y Q. An improved Cu/ZnO catalyst promoted by Sc2O3 for hydrogen production from methanol reforming [J]. Fuel, 2019, 241: 607–615. DOI: https://doi.org/10.1016/j.fuel.2018.12.067.

    Article  Google Scholar 

  72. KHZOUZ M, GKANAS E I, DU S F, WOOD J. Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming [J]. Fuel, 2018, 232: 672–683. DOI: https://doi.org/10.1016/j.fuel.2018.06.025.

    Article  Google Scholar 

  73. AJAMEIN H, HAGHIGHI M, ALAEI S. Influence of propylene glycol/nitrates ratio on microwave-assisted combustion synthesis of CuO-ZnO-Al2O3 nanocatalyst: Structural and catalytic properties toward hydrogen production from methanol [J]. Materials Research Bulletin, 2018, 102: 142–152. DOI: https://doi.org/10.1016/j.materresbull.2018.02.026.

    Article  Google Scholar 

  74. MOHTASHAMI Y, TAGHIZADEH M. Performance of the ZrO2 promoted CuZnO catalyst supported on acetic acid-treated MCM-41 in methanol steam reforming [J]. International Journal of Hydrogen Energy, 2019, 44(12): 5725–5738. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.029.

    Article  Google Scholar 

  75. AJAMEIN H, HAGHIGHI M, ALAEI S. The role of various fuels on microwave-enhanced combustion synthesis of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming [J]. Energy Conversion and Management, 2017, 137: 61–73. DOI: https://doi.org/10.1016/j.enconman.2017.01.044.

    Article  Google Scholar 

  76. BOSSOLA F, SCOTTI N, SOMODI F, CODURI M, EVANGELISTI C, DAL SANTO V. Electron-poor copper nanoparticles over amorphous zirconia-silica as all-in-one catalytic sites for the methanol steam reforming [J]. Applied Catalysis B: Environmental, 2019, 258: 118016. DOI: https://doi.org/10.1016/j.apcatb.2019.118016.

    Article  Google Scholar 

  77. JAMPA S, JAMIESON A M, CHAISUWAN T, LUENGNARUEMITCHAI A, WONGKASEMJIT S. Achievement of hydrogen production from autothermal steam reforming of methanol over Cu-loaded mesoporous CeO2 and Cu-loaded mesoporous CeO2-ZrO2 catalysts [J]. International Journal of Hydrogen Energy, 2017, 42(22): 15073–15084. DOI: https://doi.org/10.1016/j.ijhydene.2017.05.022.

    Article  Google Scholar 

  78. MAYR L, SHI X R, KOPFLE N, KLOTZER B, ZEMLYANOV D Y, PENNER S. Tuning of the copper-zirconia phase boundary for selectivity control of methanol conversion [J]. Journal of Catalysis, 2016, 339: 111–122. DOI: https://doi.org/10.1016/j.jcat.2016.03.029.

    Article  Google Scholar 

  79. GAC W, ZAWADZKI W, GRELUK M, SLOWIK G, MACHOCKI A, PAPAVASILIOU J, AVGOUROPOULOS G. Investigation of the inhibiting role of hydrogen in the steam reforming of methanol [J]. Chemcatchem, 2019, 11(14): 3264–3278. DOI: https://doi.org/10.1002/cctc.201900738.

    Article  Google Scholar 

  80. KHANI Y, BAHADORAN F, SOLTANALI S, AHARI J S. Hydrogen production by methanol steam reforming on a cordierite monolith reactor coated with Cu-Ni/LaZnAlO4 and Cu-Ni/gamma-Al2O3 catalysts [J]. Research on Chemical Intermediates, 2018, 44(2): 925–942. DOI: https://doi.org/10.1007/s11164-017-3144-8.

    Article  Google Scholar 

  81. LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming [J]. Catalyst Science & Technology, 2017, 7(21): 5069–5078. DOI: https://doi.org/10.1039/c7cy01236e.

    Article  Google Scholar 

  82. MAITI S, DAS D, PAL K, LLORCA J, SOLER L, COLUSSI S, TROVARELLI A, PRIOLKAR K R, SARODE P R, ASAKURA K. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1−xeAl2O4 hercynites [J]. Applied Catalysis A: General, 2019, 570: 73–83. DOI: https://doi.org/10.1016/j.apcata.2018.11.011.

    Article  Google Scholar 

  83. YANG S, ZHOU F, LIU Y, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7252–7261. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.254.

    Article  Google Scholar 

  84. TONG W Y, WEST A, CHEUNG K, YU K M, TSANG S C E. Dramatic effects of gallium promotion on methanol steam reforming Cu-ZnO catalyst for hydrogen production: Formation of 5 angstrom copper clusters from Cu-ZnGaOx [J]. ACS Catalysis, 2013, 3(6): 1231–1244. DOI: https://doi.org/10.1021/cs400011m.

    Article  Google Scholar 

  85. RUANO D, CORED J, AZENHA C, PEREZ-DIESTE V, MENDES A, MATEOS-PEDRERO C, CONCEPCION P. Dynamic structure and subsurface oxygen formation of a working copper catalyst under methanol steam reforming conditions: An in situ time-resolved spectroscopic study [J]. ACS Catalysis, 2019, 9(4): 2922–2930. DOI: https://doi.org/10.1021/acscatal.8b05042.

    Article  Google Scholar 

  86. HE X H, WANG Y, ZHANG X, DONG M, WANG G F, ZHANG B S, NIU Y M, YAO S Y, HE X, LIU H C. Controllable in situ surface restructuring of cu catalysts and remarkable enhancement of their catalytic activity [J]. ACS Catalysis, 2019, 9(3): 2213–2221. DOI: https://doi.org/10.1021/acscatal.8b04812.

    Article  Google Scholar 

  87. CAO L, LU M H, LI G, ZHANG S Y. Hydrogen production from methanol steam reforming catalyzed by Fe modified Cu supported on attapulgite clay [J]. Reaction Kinetics Mechanisms and Catalysis, 2019, 126(1): 137–152. DOI: https://doi.org/10.1007/s11144-018-1493-y.

    Article  Google Scholar 

  88. LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming [J]. Chemcatchem, 2018, 10(24): 5698–5706. DOI: https://doi.org/10.1002/cctc.201801472.

    Article  Google Scholar 

  89. FASANYA O A, ALHAJRI R, AHMED O U, MYINT M T Z, ATTA A Y, JIBRIL B Y, DUTTA J. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming [J]. International Journal of Hydrogen Energy, 2019, 44(41): 22936–22946. DOI: https://doi.org/10.1016/j.ijhydene.2019.06.185.

    Article  Google Scholar 

  90. KUO M T, CHEN Y Y, HUNG W Y, LIN S F, LIN H P, HSU C H, SHIH H Y, XIE W A, LI S N. Synthesis of mesoporous Cu-Fe/silicates catalyst for methanol steam reforming [J]. International Journal of Hydrogen Energy, 2019, 44(28): 14416–14423. DOI: https://doi.org/10.1016/j.ijhydene.2019.03.014.

    Article  Google Scholar 

  91. KIM J H, JANG Y S, KIM J C, KIM D H. Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol [J]. Korean Journal of Chemical Engineering, 2019, 36(3): 368–376. DOI: https://doi.org/10.1007/s11814-018-0211-9.

    Article  Google Scholar 

  92. MAYR L, KOPFLE N, KLOTZER B, GOTSCH T, BERNARDI J, SCHWARZ S, KEILHAUER T, ARMBRUSTER M, PENNER S. Microstructural and chemical evolution and analysis of a self-activating CO2-Selective Cu-Zr bimetallic methanol steam reforming catalyst [J]. Journal of Physical Chemistry C, 2016, 120(44): 25395–25404. DOI: https://doi.org/10.1021/acs.jpcc.6b07824.

    Article  Google Scholar 

  93. MA K, CUI Z H, ZHANG Z T, HUANG J J, SUN Z R, TIAN Y, DING T, LI X G. Alloy-mediated ultra-low CO selectivity for steam reforming over Cu-Ni bimetallic catalysts [J]. ChemCatChem, 2018, 10(18): 4010–4017. DOI: https://doi.org/10.1002/cctc.201800684.

    Article  Google Scholar 

  94. SEYEDI A M, HAGIGHI M, RAHEMI N. Significant influence of cutting-edge plasma technology on catalytic properties and performance of CuO-ZnO-Al2O3-ZrO2 nanocatalyst used in methanol steam reforming for fuel cell grade hydrogen production [J]. Ceramics International, 2017, 43(8): 6201–6213. DOI: https://doi.org/10.1016/j.ceramint.2017.02.018.

    Article  Google Scholar 

  95. BAGHERZADEH S B, HAGHIGHI M. Plasma-enhanced comparative hydrothermal and coprecipitation preparation of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming [J]. Energy Conversion and Management, 2017, 142: 452–465. DOI: https://doi.org/10.1016/j.enconman.2017.03.069.

    Article  Google Scholar 

  96. ZHANG Y D, ZHAO Y W, HAO Y. A study on steam reforming of methanol over a novel nanocatalyst of compound metal oxides [J]. Cleaner Energy for Cleaner Cities, 2018, 152: 192–197. DOI: https://doi.org/10.1016/j.egypro.2018.09.087.

    Google Scholar 

  97. HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on gamma-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming [J]. International Journal of Hydrogen Energy, 2017, 42(15): 9930–9937. DOI: https://doi.org/10.1016/j.ijhydene.2017.01.229.

    Article  Google Scholar 

  98. CAO J, MA Y F, GUAN G Q, HAO X G, MA X L, WANG Z D, KUSAKABE K, ABUDULA A. Reaction intermediate species during the steam reforming of methanol over metal modified molybdenum carbide catalysts [J]. Applied Catalysis B: Environmental, 2016, 189: 12–18. DOI: https://doi.org/10.1016/j.apcatb.2016.02.021.

    Article  Google Scholar 

  99. ZHANG R B, HUANG C Q, ZONG L J, LU K, WANG X W, CAI J X. Hydrogen production from methanol steam reforming over TiO2 and CeO2 pillared clay supported Au catalysts [J]. Applied Sciences Basel, 2018, 8(2): 167. DOI: https://doi.org/10.3390/app8020176.

    Article  Google Scholar 

  100. SHI J, MAHR C, MURSHED M M, GESING T M, ROSENAUER A, BAUMER M, WITTSTOC A. Steam reforming of methanol over oxide decorated nanoporous gold catalysts: A combined in situ FTIR and flow reactor study [J]. Physical Chemistry Chemical Physics, 2017, 19(13): 8880–8888. DOI: https://doi.org/10.1039/c6cp08849j.

    Article  Google Scholar 

  101. NOWICKA E, ALTHAHBAN S M, LUO Y, KRIEGEL R, SHAW G, MORGAN D J, HE Q, WATANABE M, ARMBRUSTER M, KIELY C J. Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction [J]. Catalysis Science & Technology, 2018, 8(22): 5848–5857. DOI: https://doi.org/10.1039/c8cy01100a.

    Article  Google Scholar 

  102. LI X Y, LI L, LIN J, QIAO B T, YANG X F, WANG A Q, WANG X D. Reactivity of methanol steam reforming on ZnPd intermetallic catalyst: Understanding from microcalorimetric and FT-IR studies [J]. Journal of Physical Chemistry C, 2018, 122(23): 12395–12403. DOI: https://doi.org/10.1021/acs.jpcc.8b03933.

    Article  Google Scholar 

  103. PLONER K, GOTSCH T, KOGLER G, THALINGER P, BERNARDI J, ZHAO Q, ZHOU C, KLOTZER B, PENNER S. Structural and catalytic properties of Ag- and Co3O4-impregnated strontium titanium ferrite SrTi0.7Fe0.3O3-delta in methanol steam reforming [J]. Industrial & Engineering Chemistry Research, 2017, 56(46): 13654–13662. DOI: https://doi.org/10.1021/acs.iecr.7b03778.

    Article  Google Scholar 

  104. EAIMSUMANG S, WONGKASEMJIT S, PONGSTABODEE S, SMITH SM, RATANAWILAI S, CHOLLACOOP N, LUENGNARUEMITCHAI A. Effect of synthesis time on morphology of CeO2 nanoparticles and Au/CeO2 and their activity in oxidative steam reforming of methanol [J]. Journal of Rare Earths, 2019, 37(8): 819–828. DOI: https://doi.org/10.1016/j.jre.2018.11.010.

    Article  Google Scholar 

  105. LIU Z Y, YAO S Y, JOHNSTON P A, XU W Q, RODRIGUEZ J A, SENANAYAKE S D. Methanol steam reforming over Ni-CeO2 model and powder catalysts: Pathways to high stability and selectivity for H2/CO2 production [J]. Catalysis Today, 2018, 311: 74–80. DOI: https://doi.org/10.1016/j.cattod.2017.08.041.

    Article  Google Scholar 

  106. LYTKINA A A, OREKHOVA N V, ERMILOVA M M, YAROSLAVTSEV A B. The influence of the support composition and structure (MXZr1−XO2-delta) of bimetallic catalysts on the activity in methanol steam reforming [J]. International Journal of Hydrogen Energy, 2018, 43(1): 198–207. DOI: https://doi.org/10.1016/j.ijhydene.2017.10.182.

    Article  Google Scholar 

  107. MIERCZYNSKI P, MIERCZYNSKA A, CIESIELSKI R, MANIUKIEWICZ W, ROGOWSKI J, MANIECKI T P, DUBKOV S, SYSA A, GROMOV, SZYNKOWSKA M I. Modern Ni and Pd-Ni catalysts supported on Sn-Al binary oxide for oxy-steam reforming of methanol [J]. Energy Technology, 2018, 6(9): 1687–1699. DOI: https://doi.org/10.1002/ente.201700840.

    Article  Google Scholar 

  108. KAMYAR N, KHANI Y, AMINI M M, BAHADORAN F, SAFARI N. Embedding Pt-SnO manoparticles into MIL-101(Cr) pores: Hydrogen production with low carbon monoxide content from a new methanol steam reforming catalyst [J]. ChemistrySelect, 2019, 4(20): 6113–6122. DOI: https://doi.org/10.1002/slct.201901071.

    Article  Google Scholar 

  109. KRIEGEL R, IVARRSSON D C A, ARMBRUSTER M. Formic acid decomposition over ZnPd-Implications for methanol steam reforming [J]. ChemCatChem, 2018, 10(12): 2664–2672. DOI: https://doi.org/10.1002/cctc.201800194.

    Article  Google Scholar 

  110. BARRIOUS C E, BALTANAS M A, BOSCO M V, BONIVARDI A L. On the surface nature of bimetallic PdZn particles supported on a ZnO-CeO2 nanocomposite for the methanol steam reforming reaction [J]. Catalysis Letters, 2018, 148(8): 2233–2246. DOI: https://doi.org/10.1007/s10562-018-2441-1.

    Article  Google Scholar 

  111. RAMESHAN C, LORENZ H, ARMBRUSTER M, KASATHIN I, KLOTZER B, GOTSCH T, PLONER K, PENNER S. Impregnated and co-precipitated Pd-Ga2O3, Pd-In2O3 and Pd-Ga2O3-In2O3 catalysts: Influence of the microstructure on the CO2 selectivity in methanol steam reforming [J]. Catalysis Letters, 2018, 148(10): 3062–3071. DOI: https://doi.org/10.1007/s10562-018-2491-4.

    Article  Google Scholar 

  112. KIM G J, KIM M S, BYUN J Y, HONG S C. Effects of Ru addition to Pd/Al2O3 catalysts on methanol steam reforming reaction: A mechanistic study [J]. Applied Catalysis A: General, 2019, 572: 115–123. DOI: https://doi.org/10.1016/j.apcata.2018.12.035.

    Article  Google Scholar 

  113. WANG C Y, OUYANG M Y, LI M W, LEE S, FLYTZANI-STEPHANOPOULOS M. Low-coordinated Pd catalysts supported on Zn1Zr1Ox composite oxides for selective methanol steam reforming [J]. Applied Catalysis A: Genernal, 2019, 580: 81–92. DOI: https://doi.org/10.1016/j.apcata.2019.05.006.

    Article  Google Scholar 

  114. BARRIOS C E, BOSCO M V, BALTANAS M A, BONIVARDI A L. Hydrogen production by methanol steam reforming: Catalytic performance of supported-Pd on zinc-cerium oxides’ nanocomposites [J]. Applied Catalysis B: Environment, 2015, 179: 262–275. DOI: https://doi.org/10.1016/j.apcatb.2015.05.030.

    Article  Google Scholar 

  115. LIU X, MEN Y, WANG J G, HE R, WANG Y Q. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming [J]. Journal of Power Sources, 2017, 364: 341–350. DOI: https://doi.org/10.1016/j.jpowsour.2017.08.043.

    Article  Google Scholar 

  116. TAGHIZADEH M, AKHOUNDZADEH H, REZAYAN A, SADEGHIAN M. Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming [J]. International Journal of Hydrogen Energy, 2018, 43(24): 10926–10937. DOI: https://doi.org/10.1016/j.ijhydene.2018.05.034.

    Article  Google Scholar 

  117. CAI F F, LU P J, IBRAHIM J J, FU Y, ZHANG J, SUN Y H. Investigation of the role of Nb on Pd-Zr-Zn catalyst in methanol steam reforming for hydrogen [J]. International Journal of Hydrogen Energy, 2019, 44(23): 11717–11733. DOI: https://doi.org/10.1016/j.ijhydene.2019.03.125.

    Article  Google Scholar 

  118. MIERCZYNSKI P, MIERCZYNSKA A, CIESIELSKI R, MOSINSKA M, NOWOSIELSKA M, CZYLKOWSKA A, MANIUKIEWICZ W, SZYNKOWSKA M I. High active and selective Ni/CeO2-Al2O3 and Pd-Ni/CeO2-Al2O3 catalysts for oxy-steam reforming of methanol [J]. Catalysts, 2018, 8(9): 380. DOI: https://doi.org/10.3390/catal8090380.

    Article  Google Scholar 

  119. ZENG Z, LIU G, GENG J F, JING D W, HONG X L, GUO L J. A high-performance PdZn alloy catalyst obtained from metal-organic framework for methanol steam reforming hydrogen production [J]. International Journal of Hydrogen Energy, 2019, 44(45): 24387–24397. DOI: https://doi.org/10.1016/j.ijhydene.2019.07.195.

    Article  Google Scholar 

  120. GU X K, QIAO B T, HUANG C Q, DING W C, SUN K J, ZHAN E S, ZHANG T, LIU J Y, LI W X. Supported single Pt1/Au1 atoms for methanol steam reforming [J]. ACS Catalysis, 2014, 4(11): 3886–3890. DOI: https://doi.org/10.1021/cs500740u.

    Article  Google Scholar 

  121. MAYR L, KLOTZER B, SCHMIDMAIR D, KOPFLE N, BERNARDI J, SCHWARZ S, ARMBRUSTER M, PENNER S. Boosting hydrogen production from methanol and water by in situ activation of bimetallic Cu-Zr species [J]. Chemcatchem, 2016, 8(10): 1778–1781. DOI: https://doi.org/10.1002/cctc.201600361.

    Article  Google Scholar 

  122. RAHEMI N, HAGHIGHI M, BABALUO A A, JAFARI M F, ESTIFAEE P. Plasma assisted synthesis and physicochemical characterizations of Ni-Co/Al2O3 nanocatalyst used in dry reforming of methane [J]. Plasma Chemistry and Plasma Processing, 2013, 33(4): 663–680. DOI: https://doi.org/10.1007/s11090-013-9460-x.

    Article  Google Scholar 

  123. CHENG D G, ZHU X, BEN Y H, HE F, CUI L, LIU C J. Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma [J]. Catalysis Today, 2006, 115(1–4): 205–210. DOI: https://doi.org/10.1016/j.cattod.2006.02.063.

    Article  Google Scholar 

  124. RAHEMI N, HAGHIGHI M, BABALUO A A, JAFARI M F, ALLAHYARI S. CO2 reforming of methane over Ni-Cu/Al2O3-ZrO2 nanocatalyst: The influence of plasma treatment and process conditions on catalytic properties and performance [J]. Korean Journal of Chemical Engineering, 2014, 31(9): 1553–1563. DOI: https://doi.org/10.1007/s11814-014-0123-2.

    Article  Google Scholar 

  125. CAO S, YANG M, ELNABAWY A O, TRIMPALIS A, LI S, WANG C, GOLTL F, CHEN Z H Y, LIU J L, SHAN J J. Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions [J]. Nature Chemistry, 2019, 11(12): 1098–1105. DOI: https://doi.org/10.1038/s41557-019-0345-3.

    Article  Google Scholar 

  126. LIAN H Y, LI X S, LIU J L, ZHU X B, ZHU A M. Oxidative pyrolysis reforming of methanol in warm plasma for an on-board hydrogen production [J]. International Journal of Hydrogen Energy, 2017, 42(19): 13617–13624. DOI: https://doi.org/10.1016/j.ijhydene.2016.10.166.

    Article  Google Scholar 

  127. WANG Y, GAO X, LIN C H, SHI L Y, LI X H, WU G L. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber [J]. Journal of Alloys and Compounds, 2019, 785: 765–773. DOI: https://doi.org/10.1016/j.jallcom.2019.01.271.

    Article  Google Scholar 

  128. WANG C C, YI X H, WANG P. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance [J]. Applied Catalysis B: Environmental, 2019, 247: 24–48. DOI: https://doi.org/10.1016/j.apcatb.2019.01.091.

    Article  Google Scholar 

  129. GARCIA-GARCIA P, MULLER M, CORMA A. MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts [J]. Chemical Science, 2014, 5(8): 2979–3007. DOI: https://doi.org/10.1039/c4sc00265b.

    Article  Google Scholar 

  130. HAN B, LANG R, TANG H L, XU J, GU X K, QIAO B T, LIU J. Superior activity of Rh-1/ZnO single-atom catalyst for CO oxidation [J]. Chinese Journal of Catalysis, 2019, 40(12): 1847–1853. DOI: https://doi.org/10.1016/S1872-2067(19)63411-X.

    Article  Google Scholar 

  131. GUO X, FANG G, LI G, MA H, FAN H J, YU L, MA C, WU X, DENG D H, WEI M M. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen [J]. Science, 2014, 344(6184): 616–619. DOI: https://doi.org/10.1126/science.1253150.

    Article  Google Scholar 

  132. YANG M, LI S, WANG Y, HERRON J A, XU Y, ALLARD L F, LEE S, HUANG J, MAVRIKAKIS M, FLYTZANI-STEPHANOPOULOS M. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides [J]. Science, 2014, 346(6216): 1498–1501. DOI: https://doi.org/10.1126/science.1260526.

    Article  Google Scholar 

  133. WANG A, LI J, ZHANG T. Heterogeneous single-atom catalysis [J]. Nature Reviews Chemistry, 2018, 2(6): 65–81. DOI: https://doi.org/10.1038/s41570-018-0010-1.

    Article  Google Scholar 

  134. NIE L, MEI D, XIONG H, PENG B, REN Z, HERNANDEZ X I P, DELARIVA A, WANG M, ENGELHARD M H, KOVARIK L. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation [J]. Science, 2017, 358(6369): 1419–1423. DOI: https://doi.org/10.1126/science.aao2109.

    Article  Google Scholar 

  135. YANG M, LIU J, LEE S, ZUGIC B, HUANG J, ALLARD L F, FLYTZANI-STEPHANOPOUPOS M. A common single-site Pt(II)-O(OH)x-species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction [J]. Journal of the American Chemical Society, 2015, 137(10): 3470–3473.

    Article  Google Scholar 

  136. YAN H, CHENG H, YI H, LIN Y, YAO T, WANG C L, LI J J, WEI S Q, LU J L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene [J]. Journal of the American Chemical Society, 2015, 137(33): 10484–10487. DOI: https://doi.org/10.1021/jacs.5b06485.

    Article  Google Scholar 

  137. LI X M, LI X D. Interrogating interactions and modifications of histones in live cells [J]. Cell Chemical Biology, 2018, 25(1): 1–3. DOI: https://doi.org/10.1016/j.chembiol.2018.01.003.

    Article  Google Scholar 

  138. JAHNNISCH K, HESSEL V, LOWE H, BAERNS M. Chemistry in microstructured reactors [J]. Angewandte Chemie-International Edition, 2004, 43(4): 406–446. DOI: https://doi.org/10.1002/anie.200300577.

    Article  Google Scholar 

  139. ZHENG T, ZHOU W, YU W, KE Y Z, LIU Y X, LIU R L, HUI K S. Methanol steam reforming performance optimisation of cylindrical microreactor for hydrogen production utilising error backpropagation and genetic algorithm [J]. Chemical Engineering Journal, 2019, 357: 641–654. DOI: https://doi.org/10.1016/j.cej.2018.09.129.

    Article  Google Scholar 

  140. LYTKINA A A, MIRONOVA E Y, OREKHOVA N V, ERMILOVA M M, YAROSLAVTSEV A B. Ru-containing catalysts for methanol and ethanol steam reforming in conventional and membrane reactors [J]. Inorganic Materials, 2019, 55(6): 547–555. DOI: https://doi.org/10.1134/S0020168519060104.

    Article  Google Scholar 

  141. LIU Y X, ZHOU W, CHEN L, LIN Y, CHU X Y, ZHENG T Q, WAN S L. Optimal design and fabrication of surface microchannels on copper foam catalyst support in a methanol steam reforming microreactor [J]. Fuel, 2019, 253: 1545–1555. DOI: https://doi.org/10.1016/j.fuel.2019.05.099.

    Article  Google Scholar 

  142. LIAN H Y, LIU J L, LI X S, ZHU X B, WEBER A Z, ZHU A M. Plasma chain catalytic reforming of methanol for on-board hydrogen production [J]. Chemical Engineering Journal, 2019, 369: 245–252. DOI: https://doi.org/10.1016/j.cej.2019.03.069.

    Article  Google Scholar 

  143. HERDEM M S, MUNDHWA M, FARHAD S, HAMDULLAHPUR F. Multiphysics modeling and heat distribution study in a catalytic microchannel methanol steam reformer [J]. Energy & Fuels, 2018, 32(6): 7220–7234. DOI: https://doi.org/10.1021/acs.energyfuels.8b01280.

    Article  Google Scholar 

  144. PERNG S W, HORNG R F, WU H W. Influence of necking configuration of a methanol steam reformer on catalyst amount and reforming performance [J]. Energy Sources Part A-Recovery Utilizaton and Environmental Effects, 2019. DOI: https://doi.org/10.1080/15567036.2019.1651795.

  145. HIRAMATSU H, SAKURAI M, MAKI T, KAMEYAMA H. Stacked etched aluminum flow-through membranes for methanol steam reforming [J]. International Journal of Hydrogen Energy, 2017, 42(15): 9922–9929. DOI: https://doi.org/10.1016/j.ijhydene.2017.01.106.

    Article  Google Scholar 

  146. WANG F, LI LJ, LIU Y Y. Effects of flow and operation parameters on methanol steam reforming in tube reactor heated by simulated waste heat [J]. International Journal of Hydrogen Energy, 2017, 42(42): 26270–26276. DOI: https://doi.org/10.1016/j.ijhydene.2017.09.002.

    Article  Google Scholar 

  147. ZHOU W, YU W, KE Y Z, LIU Y X, WAN S L, LIN J D. Size effect and series-parallel integration design of laminated methanol steam reforming microreactor for hydrogen production [J]. International Journal of Hydrogen Energy, 2018, 43(42): 19396–19404. DOI: https://doi.org/10.1016/j.ijhydene.2018.08.199.

    Article  Google Scholar 

  148. SARI A, SABZIANI J. Modeling and 3D-simulation of hydrogen production via methanol steam reforming in copper-coated channels of a mini reformer [J]. Journal of Power Sources, 2017, 352: 64–76. DOI: https://doi.org/10.1016/j.jpowsour.2017.03.120.

    Article  Google Scholar 

  149. YAO L, WANG F, WANG L, WANG G Q. Transport enhancement study on small-scale methanol steam reforming reactor with waste heat recovery for hydrogen production [J]. Energy, 2019, 175: 986–997. DOI: https://doi.org/10.1016/j.energy.2019.03.157.

    Article  Google Scholar 

  150. ZHENG B, SUN P, ZHAO Q, LIU YQ, ZHANG Z L. Effects of particle sizes on methanol steam reforming for hydrogen production in a reactor heated by waste heat [J]. International Journal of Hydrogen Energy, 2019, 44(11): 5615–5622. DOI: https://doi.org/10.1016/j.ijhydene.2018.07.163.

    Article  Google Scholar 

  151. TAJRISHI O Z, TAGHIZADEH M, KIADEHI A D. Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr-modified mesoporous Cu/SBA-15 nanocatalyst [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14103–14120. DOI: https://doi.org/10.1016/j.ijhydene.2018.06.035.

    Article  Google Scholar 

  152. XU Z J, YANG S, HU G H, WANG Q H, LI J R. Numerical study of flow distribution uniformity for the optimization of gradient porosity configuration of porous copper fiber sintered felt for hydrogen production through methanol steam reforming micro-reactor [J]. International Journal of Hydrogen Energy, 2018, 43(9): 4355–4370. DOI: https://doi.org/10.1016/j.ijhydene.2018.01.083.

    Article  Google Scholar 

  153. SARAFRAZ M M, SAFAEI M R, GOODARZI M, ARRJOMANDI M. Reforming of methanol with steam in a micro-reactor with Cu-SiO2 porous catalyst [J]. International Journal of Hydrogen Energy, 2019, 44(36): 19628–19639. DOI: https://doi.org/10.1016/j.ijhydene.2019.05.215.

    Article  Google Scholar 

  154. LYTKINA A A, OREKHOVA N V, ERMILOVA M M, PETRIEV I S, BARYSHEV M G, YAROSLAVTSEV A B. Ru-Rh based catalysts for hydrogen production via methanol steam reforming in conventional and membrane reactors [J]. International Journal of Hydrogen Energy, 2019, 44(26): 13310–13322. DOI: https://doi.org/10.1016/j.ijhydene.2019.03.205.

    Article  Google Scholar 

  155. KHANI Y, BAHADORAN F, SAFARI N, SOLTANALI S, TAHERI S A. Hydrogen production from steam reforming of methanol over Cu-based catalysts: The behavior of ZnxLaxAl1−-xO4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors [J]. International Journal of Hydrogen Energy, 2019, 44(23): 11824–11837. DOI: https://doi.org/10.1016/j.ijhydene.2019.03.031.

    Article  Google Scholar 

  156. LEI H Y, LI J R, WANG Q H, XU Z J, ZHOU W, YU C L, ZHENG T Q. Feasibility of preparing additive manufactured porous stainless steel felts with mathematical micro pore structure as novel catalyst support for hydrogen production via methanol steam reforming [J]. International Journal of Hydrogen Energy, 2019, 44(45): 24782–24791. DOI: https://doi.org/10.1016/j.ijhydene.2019.07.187.

    Article  Google Scholar 

  157. LI J R, YU C L, XU Z J, WANG Q H, ZHOU W, ZHENG T Q. Preparing a novel gradient porous metal fiber sintered felt with better manufacturability for hydrogen production via methanol steam reforming [J]. International Journal of Hydrogen Energy, 2019, 44(43): 23983–23995. DOI: https://doi.org/10.1016/j.ijhydene.2019.07.142.

    Article  Google Scholar 

  158. KE Y, ZHOU W, CHU X Y, YUAN D, WAN S L, YU W, LIU Y X. Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production [J]. International Journal of Hydrogen Energy, 2019, 44(12): 5755–5765. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.141.

    Article  Google Scholar 

  159. PERNG S W, HORNG R F. Numerical analysis of performance enhancement and non-isothermal reactant transport of a cylindrical methanol reformer wrapped with a porous sheath under steam reforming [J]. International Journal of Hydrogen Energy, 2017, 42(38): 24372–24392. DOI: https://doi.org/10.1016/j.ijhydene.2017.07.170.

    Article  Google Scholar 

  160. ZHOU W, KE Y Z, PEI P C, YU W, CHU X Y, LI S L, YANG K. Hydrogen production from cylindrical methanol steam reforming microreactorwith porous Cu-Al fiber sintered felt [J]. International Journal of Hydrogen Energy, 2018, 43(7): 3643–3654. DOI: https://doi.org/10.1016/j.ijhydene.2017.12.118.

    Article  Google Scholar 

  161. RIBEIRINHA P, ABDOLLAHZADEH M, PEREIRA A, RELVAS F, BOAVENTURA M, MENDES A. High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling [J]. Applied Energy, 2018, 215: 659–669. DOI: https://doi.org/10.1016/j.apenergy.2018.02.029.

    Article  Google Scholar 

  162. RIBEIRINHA P, ABDOLLAHZADEH M, SOUSA JM, BOAVENTURA M, MENDES A. Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell [J]. Applied Energy, 2017, 202: 6–19. DOI: https://doi.org/10.1016/j.apenergy.2017.05.120.

    Article  Google Scholar 

  163. PERNG S W, HORNG R F, WU H W. Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis [J]. Applied Energy, 2017, 206: 312–328. DOI: https://doi.org/10.1016/j.apenergy.2017.08.194.

    Article  Google Scholar 

  164. WANG Q H, YANG S, ZHOU W, LI J R, XU Z J, KE Y Z, YU W, HU G H. Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution [J]. Applied Energy, 2018, 216: 243–261. DOI: https://doi.org/10.1016/j.apenergy.2018.02.102.

    Article  Google Scholar 

  165. TAHAY P, KHANI Y, JABARI M, BAHADORAN F, SAFARI N. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation [J]. Applied Catalysis A: General, 2018, 554: 44–53. DOI: https://doi.org/10.1016/j.apcata.2018.01.022.

    Article  Google Scholar 

  166. HEIDARZADEH M, TAGHIZADEH M. Methanol steam reforming in a spiral-shaped microchannel reactor over Cu/ZnO/Al2O3 catalyst: A computational fluid dynamics simulation study [J]. International Journal of Chemical Reactor Engineering, 2017, 15(4): 11. DOI: https://doi.org/10.1515/ijcre-2016-0205.

    Article  Google Scholar 

  167. CHENG Z D, MEN J J, ZHAO X R, HE Y L, TAO Y B. A comprehensive study on parabolic trough solar receiver-reactors of methanol-steam reforming reaction for hydrogen production [J]. Energy Conversion and Management, 2019, 186: 278–292. DOI: https://doi.org/10.1016/j.enconman.2019.02.068.

    Article  Google Scholar 

  168. HERDEM M S, MUNDHWA M, FARHAD S, HAMDULLAHPUR F. Catalyst layer design and arrangement to improve the performance of a microchannel methanol steam reformer [J]. Energy Conversion and Management, 2019, 180: 149–161. DOI: https://doi.org/10.1016/j.enconman.2018.10.094.

    Article  Google Scholar 

  169. TIAN J, KE Y, KONG G G, TAN M W, WANG Y, LIN J D, ZHOU W, WAN S L. A novel structured PdZnAl/Cu fiber catalyst for methanol steam reforming in microreactor [J]. Renewable Energy, 2017, 113: 30–42. DOI: https://doi.org/10.1016/j.renene.2017.04.070.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-qiang Sun  (孙志强).

Additional information

Foundation item: Project(51876224) supported by the National Natural Science Foundation of China; Project(2020CX008) supported by the Innovation-Driven Project of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Sun, Zq. Hydrogen generation from methanol reforming for fuel cell applications: A review. J. Cent. South Univ. 27, 1074–1103 (2020). https://doi.org/10.1007/s11771-020-4352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4352-8

Key words

关键词

Navigation