Skip to main content
Log in

Proposal and analysis of a coupled power generation system for natural gas pressure reduction stations

一种用于天然气降压站的耦合式发电系统的提出与分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

With the increased use of natural gas, it is valuable to study energy recovery ratio in the natural gas pressure reduction stations (PRSs). This paper focused on recovering the energy in PRSs as well as low-grade waste heat by a coupled power generation system (CPGS). The CPGS integrates a natural gas expansion (NGE) subsystem and an organic Rankine cycle (ORC) subsystem driven by low-temperature waste heat. Firstly, a comparative analysis is carried out between the separated natural gas expansion system and the separated ORC system. Then, the effects of heat source conditions, upstream pressure of natural gas and the isentropic efficiency of the natural gas expander are investigated. At last, working fluids selection is conducted with respect to two different pressure ranges of natural gas. The results show that there is an optimal temperature and mass flow rate of the heat source that maximizes the system exergy efficiency. With the increase of the upstream pressure of natural gas, the net power output and waste heat recovery factor increase while the system exergy efficiency has an optimal point. Furthermore, the isentropic efficiency of the natural gas expander has a great influence on the net power output of the system.

摘要

随着天然气的用量增加,提高天然气降压站的能量回收率势在必行。本文通过一种耦合式发电 系统(CPGS),回收降压站的余能以及低品位废热。CPGS 集成了天然气膨胀子系统和低温废热驱动的 有机朗肯循环子系统。首先,将CPGS 与独立的天然气膨胀系统和ORC 系统进行比较分析;其次, 探究了热源条件、天然气上游压力和膨胀机等熵效率等因素的影响;最后,针对于两种不同的压力范 围进行工质选择。结果表明,在不同的热源温度和流量下,系统火用效率存在最优值。随着上游天然气 压力的增加,系统净输出功和废热利用率增加,而系统火用效率存在最优点。此外,天然气膨胀机的等 熵效率对系统输出功有明显影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LO CASCIO E, BORELLI D, DEVIA F, SCHENONE C. Key performance indicators for integrated natural gas pressure reduction stations with energy recovery [J]. Energy Conversion and Management, 2018, 164: 219–229. DOI: 10.1016/j.enconman.2018.02.089.

    Article  Google Scholar 

  2. LI C H, LIU J W, ZHENG S Y, CHEN X Y, LI J, ZENG Z Y. Performance analysis of an improved power generation system utilizing the cold energy of LNG and solar energy [J]. Applied Thermal Engineering, 2019, 159: 113937. DOI: 10.1016/j.applthermaleng.2019. 113937.

  3. LI P C, LI J, PEI G, MUNIR A, JI J. A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas [J]. Solar Energy, 2016, 127: 136–146. DOI: 10.1016/j.solener.2016.01.029.

    Article  Google Scholar 

  4. YAO S, ZHANG Y F, DENG N, YU X H, DONG S M. Performance research on a power generation system using twin-screw expanders for energy recovery at natural gas pressure reduction stations under off-design conditions [J]. Applied Energy, 2019, 236: 1218–1230. DOI: 10.1016/j.apenergy.2018.12.039.

    Article  Google Scholar 

  5. TAN H B, ZHAO Q X, SUN N N, LI Y Z. Proposal and design of a natural gas liquefaction process recovering the energy obtained from the pressure reducing stations of high-pressure pipelines [J]. Cryogenics, 2016, 80: 82–90. DOI: 10.1016/j.cryogenics.2016.09.010.

    Article  Google Scholar 

  6. FARZANEH GORD M, JANNATABADI M. Simulation of single acting natural gas Reciprocating Expansion Engine based on ideal gas model [J]. Journal of Natural Gas Science and Engineering, 2014, 21: 669–679. DOI: 10.1016/j.jngse.2014.09.031.

    Article  Google Scholar 

  7. ASHOURI E, VEYSI F, SHOJAEIZADEH E, ASADI M. The minimum gas temperature at the inlet of regulators in natural gas pressure reduction stations (CGS) for energy saving in water bath heaters [J]. Journal of Natural Gas Science and Engineering, 2014, 21: 230–240. DOI: 10.1016/j.jngse.2014. 08.005.

    Article  Google Scholar 

  8. OLFATI M, BAHIRAEI M, HEIDARI S, VEYSI F. A comprehensive analysis of energy and exergy characteristics for a natural gas city gate station considering seasonal variations [J]. Energy, 2018, 155: 721–733. DOI: 10.1016/j.energy.2018.05.069.

    Article  Google Scholar 

  9. POZIVIL J. Use of expansion turbines in natural gas pressure reduction stations [J]. Acta Montanistica Slovaca, 2004, 9(3): 258–260.

    Google Scholar 

  10. NESELI M A, OZGENER O, OZGENER L. Energy and exergy analysis of electricity generation from natural gas pressure reducing stations [J]. Energy Conversion and Management, 2015, 93: 109–120. DOI: 10.1016/j.enconman.2015.01.011.

    Article  Google Scholar 

  11. HOWARD C, OOSTHUIZEN P, PEPPLEY B. An investigation of the performance of a hybrid turboexpanderfuel cell system for power recovery at natural gas pressure reduction stations [J]. Applied Thermal Engineering, 2011, 31(13): 2165–2170. DOI: 10.1016/j.applthermaleng.2011.04.023.

    Article  Google Scholar 

  12. KOSTOWSKI W J, USÓN S. Comparative evaluation of a natural gas expansion plant integrated with an IC engine and an organic Rankine cycle [J]. Energy Conversion and Management, 2013, 75: 509–516. DOI: 10.1016/j.enconman.2013.06.041.

    Article  Google Scholar 

  13. SAADAT-TARGHI M, KHANMOHAMMADI S. Energy and exergy analysis and multi-criteria optimization of an integrated city gate station with organic Rankine flash cycle and thermoelectric generator [J]. Applied Thermal Engineering, 2019, 149: 312–324. DOI: 10.1016/j.applthermaleng.2018.12.079.

    Article  Google Scholar 

  14. SANAYE S, MOHAMMADI NASAB A. Modeling and optimizing a CHP system for natural gas pressure reduction plant [J]. Energy, 2012, 40(1): 358–369. DOI: 10.1016/j.energy.2012.01.060.

    Article  Google Scholar 

  15. FARZANEH-GORD M, ARABKOOHSAR A, DASHTBAYAZ M D, FARZANEH-KORD V. Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations [J]. Energy, 2012, 41(1): 420–428. DOI: 10.1016/j.energy.2012.02.058.

    Article  Google Scholar 

  16. CASCIO E L, MA Z, SCHENONE C. Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors [J]. Renewable Energy, 2018, 128: 177–187. DOI: 10.1016/j.renene.2018.05.058.

    Article  Google Scholar 

  17. FARZANEH-GORD M, GHEZELBASH R, ARABKOOHSAR A, PILEVARI L, MACHADO L, KOURY R N N. Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption [J]. Energy, 2015, 83: 164–176. DOI: 10.1016/j.energy.2015.02.093.

    Article  Google Scholar 

  18. ARABKOOHSAR A, GHARAHCHOMAGHLOO Z, FARZANEH- GORD M, KOURY R N N, DEYMIDASHTEBAYA M. An energetic and economic analysis of power productive gas expansion stations for employing combined heat and power [J]. Energy, 2017, 133: 737–748. DOI: 10.1016/j.energy.2017.05.163.

    Article  Google Scholar 

  19. BORELLI D, DEVIA F, LO CASCIO E, SCHENONE C. Energy recovery from natural gas pressure reduction stations: Integration with low temperature heat sources [J]. Energy Conversion and Management, 2018, 159: 274–283. DOI: 10.1016/j.enconman.2017.12.084.

    Article  Google Scholar 

  20. ALPARSLAN NESELI M, OZGENER O, OZGENER L. Thermo-mechanical exergy analysis of Marmara Eregli natural gas pressure reduction station (PRS): An application [J]. Renewable and Sustainable Energy Reviews, 2017, 77: 80–88. DOI: 10.1016/j.rser.2017.03.133.

    Article  Google Scholar 

  21. KOSTOWSKI W J, USÓN S. Thermoeconomic assessment of a natural gas expansion system integrated with a co-generation unit [J]. Applied Energy, 2013, 101: 58–66. DOI: 10.1016/j.apenergy.2012.04.002.

    Article  Google Scholar 

  22. CUI P Z, YU M X, LIU Z Q, ZHU Z Y, YANG S. Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery [J]. Energy Conversion and Management, 2019, 184: 249–261. DOI: 10.1016/j.enconman.2019.01.047.

    Article  Google Scholar 

  23. YU H, GUNDERSEN T, FENG X. Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery [J]. Energy, 2018, 160: 330–340. DOI: 10.1016/j.energy.2018.07.028.

    Article  Google Scholar 

  24. MONDEJAR M E, AHLGREN F, THERN M, GENRUP M. Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel [J]. Applied Energy, 2017, 185: 1324–1335. DOI: 10.1016/j.apenergy.2016.03.024.

    Article  Google Scholar 

  25. KHALILZADEH S, HOSSEIN NEZHAD A. Utilization of waste heat of a high-capacity wind turbine in multi effect distillation desalination: Energy, exergy and thermoeconomic analysis [J]. Desalination, 2018, 439: 119–137. DOI: 10.1016/j.desal.2018.04.010.

    Article  Google Scholar 

  26. YANG S, YANG S Y, WANG Y F, QIAN Y. Low grade waste heat recovery with a novel cascade absorption heat transformer [J]. Energy, 2017, 130: 461–472. DOI: 10.1016/j.energy. 2017.04.117.

    Article  Google Scholar 

  27. UUSITALO A, HONKATUKIA J, TURUNEN- SAARESTI T, LARJOLA J. A thermodynamic analysis of waste heat recovery from reciprocating engine power plants by means of organic Rankine cycles [J]. Applied Thermal Engineering, 2014, 70(1): 33–41. DOI: 10.1016/j.applthermaleng.2014.04.073.

    Article  Google Scholar 

  28. LI C H, ZHENG S Y, LI J, ZENG Z Y. Optimal design and thermo-economic analysis of an integrated power generation system in natural gas pressure reduction stations [J]. Energy Conversion and Management, 2019, 200: 112079. DOI:10. 1016/j.enconman.2019.112079.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yong Zeng  (曾志勇).

Additional information

Foundation item: Project(21506257) supported by the National Natural Science Foundation of China; Project(2019zzts535) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ch., Zheng, Sy., Chen, Xy. et al. Proposal and analysis of a coupled power generation system for natural gas pressure reduction stations. J. Cent. South Univ. 27, 608–620 (2020). https://doi.org/10.1007/s11771-020-4320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4320-3

Key words

关键词

Navigation