Skip to main content
Log in

Controlling deflection of long steel I-shaped girder bridge using two V-shaped pre-tensioning cables

使用两个V 形预张拉电缆对长钢I 型梁桥的挠度控制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Despite appropriate design of girder under bending and shear, the deflection of long steel girders usually exceeds the allowable range, and therefore the structural designers encounter challenges in this regard. Considering significant features of the cables, namely, low weight, small cross section, and high tensile strength, they are used in this research so as to control the deflection of long girder bridges, rather than increasing their heights. In this study, theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions. To verify the theoretical relations, the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables. The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions. In this study, the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.

摘要

尽管对梁在弯曲和剪切作用下的设计合理,但钢梁的挠度往往超过允许范围,因此结构设计人 员在这方面遇到了挑战。考虑到拉索重量轻、截面小、抗拉强度高等特点,采用拉索来控制长梁桥的 挠度,而不是提高其高度。建立了计算V 形钢索在外荷载作用下的预张力的理论关系式,并计算了V 形索和不同支承条件下钢梁桥的挠度。为验证理论关系,采用ABAQUS 有限元软件,在无索和有V 形索的情况下,对钢梁桥进行有限元建模。结果表明,所建立的理论关系式能够较好地预测V 形索梁 桥在不同支护条件下的挠度。另外,还研究了简支梁桥和固定梁桥中跨间距对跨中挠度的影响,得出 了最小挠度与支座之间的适当距离。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAZAVI M, SHEIDAII M R. Seismic performance of cable zipper-braced frames [J]. Journal of Constructional Steel Research, 2012, 74: 49–57. DOI: 10.1016/j.jcsr.2012.02.007.

    Article  Google Scholar 

  2. HOU Xing-guo, TAGAWA H. Displacement-restraint bracing for seismic retrofit of steel moment frames [J]. Journal of Constructional Steel research, 2009, 65: 1096–1104. DOI: 10.1016/j.jcsr.2008.11.008.

    Article  Google Scholar 

  3. FANAIE N, AGHAJANI S, AFSAR DIZAJ E. Theoretical assessment of the behavior of cable bracing system with central steel cylinder [J]. Advances in Structural Engineering, 2016, 2016(19): 463–472. DOI: 10.1177/ 1369433216630052.

    Article  Google Scholar 

  4. FANAIE N, AGHAJANI S, AFSAR DIZAJ E. Strengthening of moment-resisting frame using cable–cylinder bracing [J]. Advances in Structural Engineering, 2016, 2016(19): 1–19. DOI: 10.1177/1369433216649382.

    Google Scholar 

  5. GIACCU G F. An equivalent frequency approach for determining non-linear effects on pre-tensioned-cable cross-braced structures [J]. Journal of Sound and Vibration, 2018, 422: 62–78. DOI: 10.1016/j.jsv.2018.02.016.

    Article  Google Scholar 

  6. TROITSKY M S. Prestressed steel bridges—Theory and design [M]. New York: Van Nostrand Reinhold, 1990.

    Google Scholar 

  7. AYYUB B M, SOHN Y G, SAADATMANESH H. Prestressed composite girders under positive moment [J]. Journal of Structural Engineering, 1990, 1990(116): 2931–2951. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1990)116: 11(2931).

    Article  Google Scholar 

  8. AYYUB B M, SOHN Y G, SAADATMANESH H. Prestressed composite girders. II: Analytical study for negative moment [J]. Journal of Structural Engineering, 1992, 1992(118): 2763–2782. DOI: https://doi.org/10.1061/(ASCE) 0733-9445(1992)118:10(2763).

    Article  Google Scholar 

  9. NIE J G, CAI C S, ZHOU T R, LI Y. Experimental and analytical study of prestressed steel–concrete composite beams considering slip effect [J]. Journal of Structural Engineering, 2007, 2007(133): 530–540. DOI: 10.1061/(ASCE)0733-9445(2007)133:4(530).

    Article  Google Scholar 

  10. ZHOU Huan-ting, LI Shao-yuan, CHEN Lu, ZHANG Chao. Fire tests on composite steel-concrete beams prestressed with external tendons [J]. Journal of Constructional Steel Research, 2018, 143: 62–71. DOI: https://doi.org/10.1016/ j.jcsr.2017.12.008.

    Article  Google Scholar 

  11. BELLETTI B, GASPERI A. Behavior of prestressed steel beams [J]. Journal of Structural Engineering, 2010, 2010(136): 1131–1139. DOI: 10.1061/(ASCE)ST.1943-541X.0000208.

    Article  Google Scholar 

  12. PARK S, KIM T, KIM K, HONG S N. Flexural behavior of steel I-beam prestressed with externally unbonded tendons [J]. Journal of Constructional Steel Research, 2010, 66: 125–132. DOI: 10.1016/j.jcsr.2009.07.013.

    Article  Google Scholar 

  13. KAMBAL M E M, JIA Yan-min. Theoretical and experimental study on flexural behavior of prestressed steel plate girders [J]. Journal of Constructional Steel Research, 2018, 142: 5–16. DOI: https://doi.org/10. 1016/j.jcsr.2017.12.007.

    Article  Google Scholar 

  14. ZHANG Wen-fu. Symmetric and antisymmetric lateral-torsional buckling of prestressed steel I-beams [J]. Thin-walled Structures, 2018, 122: 463–479. DOI: http://dx.doi.org/10.1016/j.tws.2017.10.015.

    Article  Google Scholar 

  15. NOBLE D, NOGAL M, O’CONNOR A, PAKRASHI V. Dynamic impact testing on post-tensioned steel rectangular hollow sections: An investigation into the “compression-softening” effect [J]. Journal of Sound and Vibration, 2015, 355: 246–263. DOI: http://dx.doi.org/10.1016/j.jsv.2015.06.021.

    Article  Google Scholar 

  16. CAO Liang, LIU Jie-peng, CHEN Y Frank. Vibration performance of arch prestressed concrete truss girder under impulse excitation [J]. Engineering Structures, 2018, 165: 386–395. DOI: https://doi.org/10.1016/j.engstruct.2018.03. 050.

    Article  Google Scholar 

  17. MIYAMOTO A, TEI K, NAKAMURA H, BULL J W. Behavior of prestressed beam strengthened with external tendons [J]. Journal of Structural Engineering, 2000, 2000(126): 1033–1044. DOI: https://doi.org/10.1061/(ASCE)0733-9445 (2000)126:9(1033)

    Article  Google Scholar 

  18. PARK Y H, PARK C W, PARK Y G. The behavior of an in-service plate girder bridge strengthened with external prestressing tendons [J]. Engineering Structures, 2005, 27: 379–386. DOI:10.1016/j.engstruct.2004.10.014.

    Article  Google Scholar 

  19. REN Wei-xin, CHEN Gang, HU Wei-hua. Empirical formulas to determine cable tension using fundamental frequency [J]. Structural Engineering and Mechanics, 2005, 2005(20): 363–380. DOI: https://doi.org/10.12989/sem.2005. 20.3.363.

    Article  Google Scholar 

  20. American Institute of Steel Construction (AISC) ANSI/AISC 360–10: Specification for structural steel buildings [S]. Chicago, IL, 2010.

    Google Scholar 

  21. American Society for Testing and Materials (ASTM): Standard specification for low-relaxation, seven-wire steel strand for prestressed concrete (ASTM A416M) [S]. Philadelphia, PA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Fanaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partovi, F., Fanaie, N. Controlling deflection of long steel I-shaped girder bridge using two V-shaped pre-tensioning cables. J. Cent. South Univ. 27, 566–577 (2020). https://doi.org/10.1007/s11771-020-4317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4317-y

Key words

关键词

Navigation