Skip to main content
Log in

Investigation on high-volume fly ash pastes modified with micro-size metakaolin subjected to high temperatures

高温条件下微粒径偏高岭土改性高掺量粉煤灰粉体的研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Portland cement (PC) containing high-volume fly ash (HVFA) is usually used to obtain economical and more sustainable merits, but these merits suffer from dramatically low compressive strength especially at early ages. In this work, the possibility of using micro-size metakaolin (MSK) particles to improve the compressive strength of HVFA paste before and after subjecting to high temperatures was studied. To produce HVFA paste, cement was partially substituted with 70% fly ash (FA), by weight. After that, FA was partially substituted with MSK at ratios fluctuating from 5% to 20% with an interval of 5%, by weight. The effect of MSK on the workability of HVFA mixture was measured. After curing, specimens were subjected to different high temperatures fluctuating from 400 to 1000 °C with an interval of 200 °C for 2 h. The results were analyzed by different techniques named X-ray diffraction (XRD), thermogravimetry (TGA) and scanning electron microscopy (SEM). The results showed that the incorporation of MSK particles into HVFA mixture exhibited a negative effect on the workability and a positive effect on the compressive strength before and after firing.

摘要

包含高掺量粉煤灰(HVFA)的硅酸盐水泥(PC)具有经济和可持续的诸多优点, 但这些优点在早期易受低抗压强度影响. 本文研究了微粒径偏高岭土(MSK)粒子提高 HVFA 膏体受高温抗压强度的可能性. 为了生产 HVFA 膏体, 水泥用质量分数为 70% 的粉煤灰(FA)代替. 之后, FA 用质量分数为 5% 到 20% 的 MSK 代替, FA 质量分数变化为 5%. 测定了 MSK 对 HVFA 混合物加工性能的影响. 固化后, 试样被持续置于 400∼1000 °C 的不同高温下 2 h, 间隔温度为 200 °C. 采用 X 射线衍射(XRD)、热重(TGA)、扫描电镜(SEM)等对结果进行分析. 结果表明, 在高温高压混合料中掺入 MSK 颗粒对加工性能有负面影响, 对高温抗压强度有正面影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MILLER S A, JOHN V M, PACCA S A, HORVATH A. Carbon dioxide reduction potential in global cement industry by 2050 [J]. Cement and Concrete Research, 2018, 114: 115–125. DOI: https://doi.org/10.1016/j.cemconres.2017.08.026.

    Article  Google Scholar 

  2. RASHAD A M. A brief on high-volume Class F fly ash as cement replacement — A guide for civil engineer [J]. International Journal of Sustainable Built Environment, 2015, 4: 278–306. DOI: https://doi.org/10.1016/j.ijsbe.2015.10.002.

    Article  Google Scholar 

  3. MIKULČIĆ H, KLEMEŜ J J, VUJANOVIĆ M, URBANIEC K, DUIĆ N. Reducing greenhouse gasses emission by fostering the deployment of alternative raw material and energy sources in the cleaner cement manufacturing process [J]. Journal of Cleaner Production, 2016, 10: 119–132. DOI: https://doi.org/10.1016/j.jclepro.2016.04.145.

    Article  Google Scholar 

  4. RASHAD A M. An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete [J]. Construction and Building Materials, 2018, 187: 89–117. DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.150.

    Article  Google Scholar 

  5. DE MATOS P R, FOIATO M, LUIZ R P Jr. Ecological, fresh state and long-term mechanical properties of high-volume fly ash high- erformance self-compacting concrete [J]. Construction and Building Materials, 2019, 203: 282–293. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.074.

    Article  Google Scholar 

  6. THOMASS M. Optimizing the use of fly ash in concrete [M]. Portland Cement Association, 2007: 1–24.

  7. RASHAD A M, SELEEM H E D H, YOUSRY K M. Compressive strength of concrete mixtures with binary and ternary cement blends [J]. Building Research Journal (BRJ), 2009, 57(2): 107–130.

    Google Scholar 

  8. SELEEM H E D, RASHAD A M, ELSOKARY T. Effect of elevated temperature on physico-mechanical properties of blended cement concrete [J]. Construction and Building Materials, 2011, 25: 1009–1017. DOI: https://doi.org/10.1016/j.conbuildmat.2010.06.078.

    Article  Google Scholar 

  9. ALI A R. Cement replacement materials properties, durability, sustainability [M]. New York: Springer, 2014: 336, DOI: https://doi.org/10.1007/978-3-642-36721-2.

    Google Scholar 

  10. MALHOTRA V M, MEHTA P K. High-performance, high-volume fly ash concrete, supplementary cementing materials for sustainable development [M]. Ottawa, Canada: Marquardt Printing, 2002.

    Google Scholar 

  11. ZENG Qiang, LI Ke-fei, FENG-CHONG T, DANGLA P. Pore structure characterization of cement pastes blended with high-volume fly-ash [J]. Cement and Concrete Research, 2012, 42: 194–204. DOI: https://doi.org/10.1016/j.cemconres.2011.09.012.

    Article  Google Scholar 

  12. ZENG Qiang, LI Ke-fei, FENG-CHONG T, DANGLA P. Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes [J]. Construction and Building Materials, 2012, 27: 560–569. DOI: https://doi.org/10.1016/j.conbuildmat.2011.07.007.

    Article  Google Scholar 

  13. ZENG Qiang, LI Ke-fei, FENG-CHONG T, DANGLA P. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes [J]. Applied Surface Science, 2010, 257: 762–768. DOI: https://doi.org/10.1016/j.apsusc.2010.07.061.

    Article  Google Scholar 

  14. LU Cai-feng, WANG Wei, LI Qing-tao, HAO Ming, XU Yuan. Effects of micro-environmental climate on the carbonation depth and the pH value in fly ash concrete [J]. Journal of Cleaner Production, 2018, 181: 309–317. DOI: https://doi.org/10.1016/j.jclepro.2018.01.155.

    Article  Google Scholar 

  15. MEI Jun-peng, MA Bao-guo, TAN Hong-bo, LI Hai-nan, LIU Xiao-hai, JIANG Wen-bin, ZHANG Ting, GUO Yu-lin. Influence of steam curing and nano silica on hydration and microstructure characteristics of high volume fly ash cement system [J]. Construction and Building Materials, 2018, 171: 83–95. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.056.

    Article  Google Scholar 

  16. XU Guo-dong, TIAN Qian, MIAO Jian-xiong, LIU Jia-ping. Early-age hydration and mechanical properties of high volume slag and fly ash concrete at different curing temperatures [J]. Construction and Building Materials, 2017, 149: 367–377.

    Article  Google Scholar 

  17. TANYIDIZI H R, COSKUN A. The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash [J]. Construction and Building Materials, 2008, 22: 2269–2275. DOI: https://doi.org/10.1016/j.conbuildmat.2007.07.033.

    Article  Google Scholar 

  18. WANG Wei, LU Cai-feng, LI Yun-xia, LI Qing-tao. An investigation on thermal conductivity of fly ash concrete after elevated temperature exposure [J]. Construction and Building Materials, 2017, 148: 148–154. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.068.

    Article  Google Scholar 

  19. PATHAK N, SIDDIQUE R. Properties of self-compacting-concrete containing fly ash subjected to elevated temperatures [J]. Construction and Building Materials, 2012, 30: 274–280. DOI: https://doi.org/10.1016/j.conbuildmat.2011.11.010.

    Article  Google Scholar 

  20. UYSAL M, YILMAZ K, IPEK M. Properties and behavior of self-compacting concrete produced with GBFS and FA additives subjected to high temperatures [J]. Construction and Building Materials, 2012, 28: 321–326. DOI: https://doi.org/10.1016/j.conbuildmat.2011.08.076.

    Article  Google Scholar 

  21. FU Y F, WONG Y L, POON C S, TANG C A. Stress-strain behavior of high-strength concrete at elevated temperatures [J]. Magazine of Concrete Research, 2005, 57(9): 535–544. DOI: https://doi.org/10.1680/macr.2005.57.9.535.

    Article  Google Scholar 

  22. RASHAD A M. An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads [J]. Journal of Cleaner Production, 2015, 87: 735–744. DOI: https://doi.org/10.1016/j.jclepro.2014.09.018.

    Article  Google Scholar 

  23. RASHAD A M. An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures [J]. Journal of Cleaner Production, 2015, 93: 47–55. DOI: https://doi.org/10.1016/j.jclepro.2015.01.031.

    Article  Google Scholar 

  24. RASHAD A M. Potential use of silica fume coupled with slag in HVFA concrete exposed to elevated temperatures [J]. Journal of Materials of Civil Engineering (ASCE), 2015, 27(11): 1–10. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001274.

    Article  Google Scholar 

  25. NADEEM A, MEMIN S A, LO T Y. Mechanical performance, durability, qualitative and quantitative analysis of microstructure of fly ash and metakaolin mortar at elevated temperatures [J]. Construction and Building Materials, 2013, 38: 338–347. DOI: https://doi.org/10.1016/j.conbuildmat.2012.08.042.

    Article  Google Scholar 

  26. AYDIN S, BARADAN B. Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars [J]. Cement and Concrete Research, 2007, 37: 988–995. DOI: https://doi.org/10.1016/j.cemconres.2007.02.005.

    Article  Google Scholar 

  27. WEI Xiao-sheng, ZHU Hong-ping, LI Guo-wei, ZHANG Chang-qing, XIAO Lian-zhen. Properties of high volume fly ash concrete compensated by metakaolin or silica fume [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2007, 22(4): 725–732. DOI: https://doi.org/10.1007/s11595-006-4728-0.

    Article  Google Scholar 

  28. GÜNEYISI E, GESOǦLU M. Properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and metakaolin [J]. Materials and Structures, 2008, 41: 1519–1531. DOI: https://doi.org/10.1617/s11527-007-9345-7.

    Article  Google Scholar 

  29. RASHAD A M. Metakaolin as cementitious materials: History, scours, production and composition — A comprehensive overview [J]. Construction and Building Materials, 2013, 41: 303–318. DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.001.

    Article  Google Scholar 

  30. JIANG Lin-hua, GUAN Yu-gang. Pore structure and its effect on strength of high-volume fly ash paste [J]. Cement and Concrete Research, 1999, 29: 631–633. DOI: https://doi.org/10.1016/S0008-8846(99)00034-4.

    Article  Google Scholar 

  31. MONTGOMERY D G, HUGHES D C, WIKKIAMS R I T. Fly ash in concrete—A microstructure study [J]. Cement and Concrete Research, 1981, 11(4): 591–603. DOI: https://doi.org/10.1016/0008-8846(81)90089-2.

    Article  Google Scholar 

  32. RASHAD A M, SADEK D M. An investigation on Portland cement replaced by high-volume GGBS pastes modified with micro-sized metakaolin subjected to elevated temperatures [J]. International Journal of Sustainable Built Environment, 2017, 6: 91–101. DOI: https://doi.org/10.1016/j.ijsbe.2016.10.002.

    Article  Google Scholar 

  33. DONATELLO S, KUENZEL C, PALOMO A, FERNÁNDEZ-JIMÉNDEZ A. High temperature resistance of a very high volume fly ash cement paste [J]. Cement & Concrete Composites, 2014, 45: 234–242. DOI: https://doi.org/10.1016/j.cemconcomp.2013.09.010.

    Article  Google Scholar 

  34. IBRAHIM R K, HAMID R, TAHA M R. Fire resistance of high-volume fly ash mortars with nanosilica addition [J]. Construction and Building Materials, 2012, 36: 779–786. DOI: https://doi.org/10.1016/j.conbuildmat.2012.05.028.

    Article  Google Scholar 

  35. FRÍAS M, CABERA J. Influence of Matakaolin on the reaction kinetics in MK/lime and MK-blended cement systems at 20 °C [J]. Cement and Concrete Research, 2001, 31: 519–527. DOI: https://doi.org/10.1016/S0008-8846(00)00465-8.

    Article  Google Scholar 

  36. LARGO O R, DELA VILLA R V, DE ROJAS M I S, FRÍAS Moisés. Novel use of kaolin wastes in blended cements [J]. J Am Soc, 2009, 92(10): 2443–2446. DOI: https://doi.org/10.1111/j.1551-2916.2009.03231.x.

    Google Scholar 

  37. DUXSON P, LUKEY G C, VAN DEVENTER J S J. Thermal evolution of metakoalin geopolymers: Part 1- Physical evolution [J]. Journal of Non-Crystalline Solids, 2006, 352: 5541–5555. DOI: https://doi.org/10.1016/j.jnoncrysol.2006.09.019.

    Article  Google Scholar 

  38. RICHARD W D A, TEMUUJIN J, VAN RIESSEN A. Thermal analysis of geopolymer pastes synthesized from five fly ashes of variable composition [J]. Journal of Non-Crystalline Solids, 2012, 358: 1830–1839. DOI: https://doi.org/10.1016/j.jnoncrysol.2012.05.032.

    Article  Google Scholar 

  39. RASHAD A M, ZEEDAN S R. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load [J]. Construction and Building Materials, 2011, 25: 3098–3107.

    Article  Google Scholar 

  40. RASHAD A M. Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles [J]. Journal of Cleaner Production, 2015, 87: 717–725. DOI: https://doi.org/10.1016/j.conbuildmat.2010.12.044.

    Article  Google Scholar 

  41. LAHOTI M, WONG K K, TAN K H, YANG E H. Effect of alkali cation type on strength endurance of fly ash geopolymers subjected to high temperature exposure [J]. Materials and Design, 2018, 154: 8–19. DOI: https://doi.org/10.1016/j.matdes.2018.05.023.

    Article  Google Scholar 

  42. REN Sue, TAO Xin, XU Xi-qing, GUO An-ran, LIU Jia-chen, FAN Jin-peng, GE Jing-ran, FANG Dai-ning, LIANG Jun. Preparation and characteristic of the fly ash cenospheres/mullite composite for high-temperature application [J]. Fuel, 2018, 233: 336–345. DOI: https://doi.org/10.1016/j.fuel.2018.06.058.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashad, A.M. Investigation on high-volume fly ash pastes modified with micro-size metakaolin subjected to high temperatures. J. Cent. South Univ. 27, 231–241 (2020). https://doi.org/10.1007/s11771-020-4291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4291-4

Key words

关键词

Navigation