Skip to main content
Log in

Model test to investigate reasonable reactive artificial boundary in shaking table test with a rigid container

振动台试验中刚性模型箱人工反射边界的合理设计试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary perpendicular to the excitation direction. On the basis of numerous studies, shaking table tests with four different typical boundaries are performed in this study. The tests consider the seismic intensity and seismic wave types. Then, the simulation effects of the four boundary conditions are evaluated from four aspects as follows: the differential rate of peak acceleration, acceleration curve, similarity of Fourier frequency spectra, and uneven soil settlement in rigid containers. Results show that the simulation effects of the boundary conditions are not only affected by the nature of the boundary material but also related to the seismic intensity, types of seismic waves, and filter characteristic of the filling medium in containers. In comparison with the other three types of boundary condition, foamed polyethylene shows the best simulation effect and its effect decreases gradually with the increase in earthquake intensity. Finally, on the basis of existing studies, the evaluation criteria of boundary effect, the principle for the selection of boundary material type and the thickness of boundary material are discussed and summarized, and the corresponding design methods and suggestions are then provided.

摘要

采用刚性箱进行隧道等地下工程结构地震动力试验研究时, 合理的边界条件是关系到试验结果准确的关键因素之一, 特别是与地震激励方向垂直的人工反射边界. 本文在大量文献调研的基础上, 设置四种典型边界, 并考虑地震烈度和地震波类型, 分别开展了振动台试验. 进而, 根据试验结果, 分别从加速度峰值偏差、加速度时程谱和傅立叶频谱的相似性以及刚性箱内土体表面不均匀沉降四个方面对四种边界的模拟效果进行了评价分析. 结果表明: 振动台试验中, 边界效应的大小, 不仅受边界材料性质的影响, 还与地震烈度、地震波类型以及试验箱内填充介质的滤波特型有关; 相对于其他三种边界, 聚乙烯泡沫板边界模拟效果最为理想, 且随着地震烈度的增大, 其边界效应有逐步减小的趋势. 最后, 结合既有研究资料, 对振动台试验中的边界效应评价标准, 边界材料类型及厚度的确定进行了讨论与总结, 给出了相应的设计方法和建议.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JIANG L Z, CHEN J, LI J. Seismic response of underground utility tunnels: Shaking table testing and FEM analysis [J]. Earthquake Engineering and Engineering Vibration, 2010, 9: 555–567. DOI: https://doi.org/10.1007/s11803-010-0037-x.

    Article  Google Scholar 

  2. CHEN G X, WANG Z H, ZUO X, DU X L, GAO H M. Shaking table test on the seismic failure characteristics of a subway station structure on liquefiable ground [J]. Earthquake Engineering & Structural Dynamics, 2013, 42: 1489–1507. DOI: https://doi.org/10.1002/eqe.2283.

    Article  Google Scholar 

  3. CHEN Z Y, LI Y Y. Boundary deformation of model container design [J]. Earthquake Resistant Engineering and Retrofitting, 2015, 37(5): 106–112. DOI: https://doi.org/10.16226/j.issn.1002-8412.2015.05.018.

    Google Scholar 

  4. KHERADI H, YUKIHIRO M, RYOSUKE O, FENG Z. 3D dynamic finite element analyses and 1g shaking table tests on seismic performance of existing group-pile foundation in partially improved grounds under dry condition [J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 196–210. DOI: https://doi.org/10.1016/j.soildyn.2016.08.032.

    Article  Google Scholar 

  5. LI Y D, CUI J, GUAN T D, JING L P. Investigation into dynamic response of regional sites to seismic waves using shaking table testing [J]. Earthquake Engineering and Engineering Vibration, 2015, 14(3): 411–421. DOI: https://doi.org/10.1007/s11803-015-0033-2.

    Article  Google Scholar 

  6. PANOS K, ANNA S D S, AUGUSTO P, MATTHEW D, ALDO E, ARMANDO L S, COLIN T, GEORGE M. Investigation of seismic response of cantilever retaining walls: Limit analysis vs shaking table testing [J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 432–445. DOI: https://doi.org/10.1016/j.soildyn.2015.05.018.

    Article  Google Scholar 

  7. YANG G, YU T, YANG X, HAN B. Seismic resistant effects of composite reinforcement on rockfill dams based on shaking table tests [J]. Journal of Earthquake Engineering, 2017, 21(6): 1010–1022. DOI: https://doi.org/10.1080/13632469.2016.1190800.

    Article  Google Scholar 

  8. WANG J X, YANG G, LIU H L, SANJAY S N, TANG X J, XIAO Y. Seismic response of concrete-rockfill combination dam using large-scale shaking table tests [J]. Soil Dynamics and Earthquake Engineering, 2017, 99: 9–19. DOI: https://doi.org/10.1016/j.soildyn.2017.04.015.

    Article  Google Scholar 

  9. SRILATHA N, MADHAVI L G, PUTTAPPA C G. Effect of frequency on seismic response of reinforced soil slopes in shaking table tests [J]. Geotextiles and Geomembranes, 2013, 36: 27–32. DOI: https://doi.org/10.1016/j.geotexmem.2012.10.004.

    Article  Google Scholar 

  10. TANG L, CONG S Y, LING X Z, JU N P. The boundary conditions for simulations of a shake-table experiment on the seismic response of 3D slope [J]. Earthquake Engineering and Engineering Vibration, 2017, 16: 23–32. DOI: https://doi.org/10.1007/s11803-016-0363-8.

    Article  Google Scholar 

  11. ZHUANG Y Z, CHEN Y, CHEN B, WANG S Z, HAN Y T. Shaking table test on boundary effect of steel box for pile-soil interaction research [J]. Journal of Fuzhou University (Natural Science Edition), 2016, 44(4): 504–509. http://en.cnki.com.cn/Article_en/CJFDTOTAL-FZDZ201604009.htm. (in Chinese)

    Google Scholar 

  12. LIU H X, XU Q, LI Y R. Effect of lithology and structure on seismic response of steep slope in a shaking table test [J]. Journal of Mountain Science, 2014, 11(2): 371–383. DOI: https://doi.org/10.1007/s11629-013-2790-6.

    Article  Google Scholar 

  13. MAJID Y. Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test [J]. Soil Dynamics and Earthquake Engineering, 2017, 97: 216–232. DOI: https://doi.org/10.1016/j.soildyn.2017.03.011.

    Article  Google Scholar 

  14. YAN X, YUAN J Y, YU H T, BOBET A, YUAN Y. Multipoint shaking table test design for long tunnels under nonuniform seismic loading [J]. Tunnelling and Underground Space Technology, 2016, 59: 114–126. DOI: https://doi.org/10.1016/j.tust.2016.07.002.

    Article  Google Scholar 

  15. MASOUD R M, MOHAMMAD H B. Seismic ground motion amplification pattern induced by a subway tunnel: Shaking table testing and numerical simulation [J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 81–97. DOI: https://doi.org/10.1016/j.soildyn.2016.01.002.

    Article  Google Scholar 

  16. LOMBARDI D, BHATTACHARYA S, SCARPA F, BIANCHI M. Dynamic response of a geotechnical rigid model container with absorbing boundaries [J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 46–56. DOI: https://doi.org/10.1016/j.soildyn.2014.09.008.

    Article  Google Scholar 

  17. LEI M F, LIN D Y, HUANG Q Y, SHI C H, HUANG L C. Research on the construction risk control technology of shield tunnel underneath an operational railway in sand pebble formation: A case study [J]. European Journal of Environmental and Civil Engineering, 2018, 22(s1): 1–15. DOI: https://doi.org/10.1080/19648189.20181475305.

    Google Scholar 

  18. LEI M F, LIN D Y, SHI C H, MA J J, YANG W C. A structural calculation model of shield tunnel segment: Heterogeneous equivalent beam model [J]. Advances in Civil Engineering, 2018: 9637838. DOI: https://doi.org/10.1155/2018/9637838.

    Article  Google Scholar 

  19. BATHURST RJ, HATAMI K. Seismic response analysis of a geosynthetic reinforced soil retaining wall [J]. Geosynthetics International, 1998, 5(1, 2): 127–166. DOI: https://doi.org/10.1680/gein.5.0117.

    Article  Google Scholar 

  20. BHATTACHARYA S, LOMBARDI D, DIHORU L, DIETZ M, CREWE A J, TAYLOR C A. Model container design for soil-structure interaction studies [J]. Role of Seismic Testing Facilities in Performance-Based Earthquake Engineering, 2011, 22: 135–158. DOI: https://doi.org/10.1007/978-94-007-1977-4_8.

    Article  Google Scholar 

  21. LIN Y L, LENG W M, YANG G L, LI L, YANG J S. Seismic response of embankment slopes with different reinforcing measures in shaking table tests [J]. Natural Hazards, 2015, 76: 791–810. DOI: https://doi.org/10.1007/s11069-014-1517-5.

    Article  Google Scholar 

  22. LIN Y L, YANG G L. Dynamic behavior of railway embankment slope subjected to seismic excitation [J]. Natural Hazards, 2013, 69(1): 219–235. DOI: https://doi.org/10.1007/s11069-013-0701-3.

    Article  Google Scholar 

  23. LEI M F, LIN D Y, YANG W C, SHI C H, PENG L M, HUANG J. Model test to investigate failure mechanism and loading characteristics of shallow-bias tunnels with small clear distance [J]. Journal of Central South University, 2016, 23(12): 3312–3321. DOI: https://doi.org/10.1007/s11771-016-3397-1.

    Article  Google Scholar 

  24. XU H, LI T B, XIA L, ZHAO J C, WANG D. Shaking table tests on seismic measures of a model mountain tunnel [J]. Tunnelling and Underground Space Technology, 2016, 60: 197–209. DOI: https://doi.org/10.1016/j.tust.2016.09.004.

    Article  Google Scholar 

  25. WHITMAN R V, LAMBE P C. Effect of boundary conditions upon centrifuge experiments using ground motions simulations [J]. Geotechnical Testing Journal, 1986, 9: 61–71. DOI: https://doi.org/10.1520/GTJ11031J.

    Article  Google Scholar 

  26. CAI L W, GU Y, ZHUO W D, ZHUANG S M. The boundary effects of shaking table test soil box based on finite element simulation [C]// National Conference on Structural Engineering. Lanzhou, China, 2014. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-LXFY201410002060.htm.

  27. LEI M F, LIU J Y, LIN Y X, SHI C H, LIU C. Deformation characteristics and influence factors of a shallow tunnel excavated in soft clay with high plasticity [J]. Advances in Civil Engineering, 2019: 7483628. DOI: https://doi.org/10.1155/2019/7483628.

    Google Scholar 

  28. LEI M F, LIU L H, LIN Y X, LI J. Study on flexural bearing capacity calculation method of enclosure pile with partial excision in deep foundation pit [J]. Advances in Civil Engineering, 2019: 4812857. DOI: https://doi.org/10.1155/2019/4812857.

    Google Scholar 

  29. LIN Y X, PENG L M, LEI M F, YANG W C, LIU J W. Mechanical properties of bimrocks with high rock block proportion [J]. Journal of Central South University, 2019, 26(12): 3397–3409. DOI: https://doi.org/10.1007/s11771-019-4262-9.

    Article  Google Scholar 

  30. LOU M L, WANG W J, ZHU T, MA H C. Soil lateral boundary effect in shaking table model test of soil-structure system [J]. Earth Quake Engineering and Engineering Vibration, 2000, 20(4): 30–36. DOI: https://doi.org/10.13197/j.eeev.2000.04.005. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-xiang Lin  (林越翔).

Additional information

Foundation item: Projects(51978669, U1734208) supported by the National Natural Science Foundation of China; Project(2018JJ3657) supported by the Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Mf., Zhou, Bc., Lin, Yx. et al. Model test to investigate reasonable reactive artificial boundary in shaking table test with a rigid container. J. Cent. South Univ. 27, 210–220 (2020). https://doi.org/10.1007/s11771-020-4289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4289-y

Key words

关键词

Navigation