Skip to main content
Log in

Driving rule extraction based on cognitive behavior analysis

基于认知型行为分析的驾驶规则抽取

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to make full use of the driver’s long-term driving experience in the process of perception, interaction and vehicle control of road traffic information, a driving behavior rule extraction algorithm based on artificial neural network interface (ANNI) and its integration is proposed. Firstly, based on the cognitive learning theory, the cognitive driving behavior model is established, and then the cognitive driving behavior is described and analyzed. Next, based on ANNI, the model and the rule extraction algorithm (ANNI-REA) are designed to explain not only the driving behavior but also the non-sequence. Rules have high fidelity and safety during driving without discretizing continuous input variables. The experimental results on the UCI standard data set and on the self-built driving behavior data set, show that the method is about 0.4% more accurate and about 10% less complex than the common C4.5-REA, Neuro-Rule and REFNE. Further, simulation experiments verify the correctness of the extracted driving rules and the effectiveness of the extraction based on cognitive driving behavior rules. In general, the several driving rules extracted fully reflect the execution mechanism of sequential activity of driving comprehensive cognition, which is of great significance for the traffic of mixed traffic flow under the network of vehicles and future research on unmanned driving.

摘要

为了充分利用驾驶员在道路交通信息感知、交互和车辆控制过程中的长期驾驶经验, 提出了一 种基于 ANNI 及其集成的驾驶行为规则抽取算法. 首先, 基于认知学习理论, 建立认知型驾驶行为模型, 并进行描述和分析. 然后, 基于 ANNI 的模型和规则抽取算法(ANNI-REA)来解释驾驶行为及离散性. 在不离散连续输入变量的情况下, 规则具有较高的保真度和安全性. UCI 标准数据集和自建驾驶行为数据集上的实验结果表明, 该方法比常见的 C4.5-REA、神经规则和 REFNE 方法准确度提高了约 0.4%, 简化了约 10%. 进一步地, 仿真实验验证了所提取的驾驶规则的正确性和基于认知驾驶行为规则提取的有效性. 总的来说, 抽取的多条驾驶规则充分体现了驾驶综合认知序列活动的执行机制, 这对于车联网下混合交通流的交通以及未来无人驾驶的研究具有重要意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Road traffic injuries. [EB/OL]. [2018-02-19]. http://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries.

  2. China Highway. Analysis on the main causes and characteristics of road traffic accidents in China. [EB/OL]. [2018-04-23]. http://www.chinahighway.com/news/2018/1169754.php.

  3. ARBABZADEH N, JAFARI M. A data-driven approach for driving safety risk prediction using driver behavior and roadway information data [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(2): 17541832. DOI: https://doi.org/10.1109/TITS.2017.2700869.

    Google Scholar 

  4. PAVLOU D, YANNIS G. Road safety behavior of drivers with neurological diseases affecting cognitive functions: An interdisciplinary structural equation model analysis approach [J]. Advances in Transportation Studies, 2018, 44: 133–150. DOI: https://doi.org/10.1016/j.cbpra.2018.03.002.

    Google Scholar 

  5. WANG J, YU X P, LIU Q, YANG Z. Research on key technologies of intelligent transportation based on image recognition and anti-fatigue driving [J]. J Image Video Proc, 2019: 33. DOI: https://doi.org/10.1186/s13640-018-0403-6.

  6. GAO X, GAO L, DONG G. Research on intelligent driving behavior based on cognitive science and scene simulation [C]// International Conference on Intelligence Science & Information Engineering. IEEE, 2011. DOI: https://doi.org/10.1109/ISIE.2011.15.

  7. AYOUBI S, LIMAM N, SALAHUDDIN M A, SHAHRIAR N, BOUTABA R, ESTRADA-SOLANO F, RENDON O M C. Machine learning for cognitive network management [J]. IEEE Communications Magazine, 2018, 56(1): 158–165. DOI: https://doi.org/10.1109/MCOM.2018.1700560.

    Article  Google Scholar 

  8. HANSEN P, OXOBY R J. An earned presence: Studying the effect of multi-task improvisation systems on cognitive and learning capacity [J]. Connection Science, 2017, 29(1): 77–93. DOI: https://doi.org/10.1080/09540091.2016.1277692.

    Article  Google Scholar 

  9. BEETZ M, BUSS M, WOLLHERR D. Cognitive technical systems-what is the role of artificial intelligence? [C]// Annual Conference on Artificial Intelligence. Berlin, Heidelberg: Springer, 2007. DOI: https://doi.org/10.1007/978-3-540-74565-5_3.

    Google Scholar 

  10. BENDERIUS O, BERGER C, LUNDGREN V M. The best rated human-machine interface design for autonomous vehicles in the 2016 grand cooperative driving challenge [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(4): 1302–1307. DOI: https://doi.org/10.1109/TITS.2017.2749970.

    Article  Google Scholar 

  11. POPA A, MCDOWELL J J. Behavioral variability in an evolutionary theory of behavior dynamics [J]. Journal of the Experimental Analysis of Behavior, 2016, 105(2): 270–290. DOI: https://doi.org/10.1002/jeab.199.

    Article  Google Scholar 

  12. HUI J, HANNA E, GATTO C L, PAGE T L, BHUVA B, BROADIE K. A fully automated Drosophila, olfactory classical conditioning and testing system for behavioral learning and memory assessment [J]. Journal of Neuroscience Methods, 2016, 261(3): 62–74. DOI: https://doi.org/10.1016/j.jneumeth.2015.11.030.

    Google Scholar 

  13. VAA T. Modelling driver behaviour on basis of emotions and feelings: Intelligent transport systems and behavioural adaptations [M]// Modelling Driver Behaviour in Automotive Environments. London: Springer, 2007. DOI: https://doi.org/10.1007/978-1-84628-618-6_12.

    Google Scholar 

  14. SALVUCCI D D. Modeling driver behavior in a cognitive architecture [J]. Human Factors, 2006, 48(2): 362–380. DOI: https://doi.org/10.1518/001872006777724417.

    Article  Google Scholar 

  15. GRAEFE A C. The role of cognition in simulated driving behavior in young adults with attention-deficit/hyperactivity disorder [D]. Philadelphia: Drexel University, 2015.

    Book  Google Scholar 

  16. WANG Xiao-yuan, WANG Lei. Cooperative simulation model for driving behavior [J]. Journal of Southwest Jiaotong University, 2007, 42(2): 238–242. (in Chinese)

    Google Scholar 

  17. HAMDAR S H, MAHMASSANI H S, TREIBER M. From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment [J]. Transportation Research Part B: Methodological, 2015, 78: 32–53. DOI: https://doi.org/10.1016/j.trb.2015.03.011.

    Article  Google Scholar 

  18. QU Ting. Driver behavior modeling based on stochastic model predictive control [D]. Changchun: Jilin University, 2015. DOI: https://doi.org/10.3969/j.issn.0258-2724.2007.02.021. (in Chinese)

    Google Scholar 

  19. WATANABE T, SASAKI Y, SHIBATA K, KAWATO M. Advances in fMRI Real-Time Neurofeedback [J]. Trends in Cognitive Sciences, 2017, 21(12): 14–15. DOI: https://doi.org/10.1016/j.tics.2017.09.010.

    Article  Google Scholar 

  20. HOVHANNISYAN G. Humanistic cognitive science [J]. Humanistic Psychologist, 2018. DOI: https://doi.org/10.1037/hum0000074.

    Article  Google Scholar 

  21. DELBROEK T, VERMEYLEN W, SPILDOOREN J. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: A randomized controlled trial [J]. Journal of Physical Therapy Science, 2017, 29(7): 1137–1143. DOI: https://doi.org/10.1589/jpts.29.1137.

    Article  Google Scholar 

  22. HRAMOV A E, FROLOV N S, MAKSIMENKO V A, et al. Artificial neural network detects human uncertainty [J]. Chaos, 2018, 28(3): 1–10. DOI: https://doi.org/10.1063/1.5002892.

    Article  MathSciNet  Google Scholar 

  23. HANSEN L K, SALAMON P. Neural network ensembles [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1990, 12(10): 993–1001. DOI: https://doi.org/10.1109/34.58871.

    Article  Google Scholar 

  24. PEZESHKI Z, MAZINANI S M. Comparison of artificial neural networks, fuzzy logic and neuro fuzzy for predicting optimization of building thermal consumption: A survey [J]. Artificial Intelligence Review, 2018(819): 1–31. DOI: https://doi.org/10.1007/s10462-018-9630-6.

    Article  Google Scholar 

  25. LIANG Jun, SHA Zhi-qiang, CHEN Long. Dynamic neural network-based integrated learning algorithm for driver behavior [J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(2): 34–40. DOI: https://doi.org/10.3969/j.issn.1009-6744.2012.02.006. (in Chinese)

    Article  Google Scholar 

  26. LIN Ming-long. Incremental learning based on neural networks ensemble [D]. Hefei: University of Science and Technology of China, 2012. DOI: https://doi.org/10.7666/d.y2126157. (in Chinese)

    Google Scholar 

  27. QU W N, GE Y, XIONG Y X, CARCIOFO R, ZHAO W G, ZHANG K. The relationship between mind wandering and dangerous driving behavior among Chinese drivers [J]. Safety Science, 2015, 78: 41–48. DOI: https://doi.org/10.1016/j.ssci.2015.04.016

    Article  Google Scholar 

  28. ZHANG L, LIU P, GULLA J A. Dynamic attention-integrated neural network for session-based news recommendation [J]. Machine Learning, 2019(6): 1–25. DOI: https://doi.org/10.1007/s10994-018-05777-9.

    Article  MathSciNet  Google Scholar 

  29. LEDESMA R D, MONTES S A, POÓ F M, LóPEZ-RAMóN M F. Individual differences in driver inattention: The attention-related driving errors scale [J]. Traffic Injury Prevention, 2010, 11(2): 142–150. DOI: https://doi.org/10.1080/15389580903497139.

    Article  Google Scholar 

  30. KANG X J, NAMGUNG M, FUJIWARA A, KIM W C, WANG W J. Analysis of vehicle maneuverability and driving characteristics on a curved road condition [J]. KSCE Journal of Civil Engineering, 2018, 23(6): 420–432. DOI: https://doi.org/10.1007/s12205-018-1803-y.

    Google Scholar 

  31. MA C, TSANG I W, SHEN F M, LIU C C. Error correcting input and output hashing [J]. IEEE Transactions on Cybernetics, 2019, 49(3): 781–791. DOI: https://doi.org/10.1109/TCYB.2017.2785621.

    Article  Google Scholar 

  32. BADNAVA B, MOZAYANI N. A new potential-based reward shaping for reinforcement learning agent [J]. arXiv, 2019: 1902.06239.

  33. JANSEN T, ZARGES C. Analysis of evolutionary algorithms: From computational complexity analysis to algorithm engineering [C]// Foundations of Genetic Algorithms, International Workshop, Foga 2011. Schwarzenberg, Austria. 2011: 1–14. DOI: https://doi.org/10.1145/1967654.1967656.

  34. HAESER G, LIU H, YE Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [J]. Mathematical Programming, 2018(5): 1–37. DOI: https://doi.org/10.1007/s10107-018-1290-4

    Article  MathSciNet  Google Scholar 

  35. DEBATTISTA K, BASHFORD-ROGERS T, HARVEY C, WATERFIELD B, CHALMERS A. Subjective evaluation of high-fidelity virtual environments for driving simulations [J]. IEEE Transactions on Human-Machine Systems, 2018, 48(1): 30–40. DOI: https://doi.org/10.1109/THMS.2017.2762632.

    Article  Google Scholar 

  36. AZADEH A, BONAB N A, SALEHI V, ZARRIN M. A unique algorithm for the assessment and improvement of job satisfaction by resilience engineering: Hazardous labs [J]. International Journal of Industrial Ergonomics, 2015, 49(9): 68–77. DOI: https://doi.org/10.1016/j.ergon.2015.06.002.

    Article  Google Scholar 

  37. GHOSH J, DEUSER L, BECK S D. A neural network based hybrid system for detection, characterization, and classification of short-duration oceanic signals [J]. IEEE Journal of Oceanic Engineering, 2002, 17(4): 351–363. DOI: https://doi.org/10.1109/48.180304.

    Article  Google Scholar 

  38. ASADI S, SHAHRABI J. Complexity-based parallel rule induction for multiclass classification [J]. Information Sciences, 2017, 380(2): 53–73. DOI: https://doi.org/10.1016/j.ins.2016.10.047.

    Article  Google Scholar 

  39. FERRETTI E, TAMARGO L H, GARCÍA A J, ERRECALDE M L, SIMARI G R. An approach to decision making based on dynamic argumentation systems [J]. Artificial Intelligence, 2017, 242(C): 107–131. DOI: https://doi.org/10.1016/j.artint.2016.10.004.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liang  (梁军).

Additional information

Foundation item: Project(2017YFB0102503) supported by the National Key Research and Development Program of China; Projects(U1664258, 51875255, 61601203) supported by the National Natural Science Foundation of China; Projects(DZXX-048, 2018-TD-GDZB-022) supported by the Jiangsu Province’s Six Talent Peak, China; Project(18KJA580002) supported by Major Natural Science Research Project of Higher Learning in Jiangsu Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Yc., Liang, J., Chen, L. et al. Driving rule extraction based on cognitive behavior analysis. J. Cent. South Univ. 27, 164–179 (2020). https://doi.org/10.1007/s11771-020-4286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4286-1

Key words

关键词

Navigation