Skip to main content
Log in

Process simulation and optimization of flow field in wet electrostatic precipitator

湿式静电除尘器流场的过程模拟及优化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To improve the dust removal performance of the wet electrostatic precipitator (WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.

摘要

为了提高湿式静电除尘器的除尘性能, 本文提出了一种基于多尺度数值模拟的流场优化方法. 首先, 确定多孔板和收尘板的简化模型; 然后, 得到相关的阻力参数, 并通过中尺度实验进行验证. 将模拟得到的阻力和速度分布与实验数据比较后发现简化模型能够准确地反映多孔板和收尘板的阻力特性. 数值结果表明, 经过优化后, 电场上、下室的流量和压降基本相当, 且烟道入口的速度分布更加均匀. 将优化方案应用于工程实际后发现该方案确实有效可靠, 可为湿式静电除尘器的性能优化提供有价值的参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ŚWIERCZOK A, JĘDRUSIK M. The collection efficiency of ESP model-comparison of experimental results and calculations using deutsch model [J]. Journal of Electrostatics, 2018, 91: 41–47. DOI: https://doi.org/10.1016/j.elstat.2017.12.004.

    Article  Google Scholar 

  2. LI X D, ZHOU C Y, LI J W, LU S Y, YAN J H. Distribution and emission characteristics of filterable and condensable particulate matter before and after a low-low temperature electrostatic precipitator [J]. Environmental Science and Pollution Research, 2019, 26: 13. DOI: https://doi.org/10.1007/s11356-019-04570-y.

    Google Scholar 

  3. TANSKI M, BERENDT A, MIZERACZYK J. Closed SDBD-driven two-stage electrostatic precipitator [J]. Journal of Cleaner Production, 2019, 226: 74–84. DOI: https://doi.org/10.1016/j.jclepro.2019.03.280.

    Article  Google Scholar 

  4. KAWADA Y, SHIMIZE H. Development of an electrostatic precipitator with porous carbon electrodes to collect carbon particles [J]. Energies, 2019, 12(14): 2805. DOI: https://doi.org/10.3390/en12142805.

    Article  Google Scholar 

  5. BORDADO M J, QUINTAFERREIRA J C, QUINTAFERREIRA R M. Treatment and use of air pollution control residues from MSW incineration: An overview [J]. Waste Management, 2008, 28(11): 2097–2121. DOI: https://doi.org/10.1016/j.wasman.2007.08.030.

    Article  Google Scholar 

  6. MCCANN D. New and upgraded electrostatic precipitators for recovery boilers [J]. Journal of Science & Technology for Forest Products and Processes, 2017, 6(3): 15–18.

    Google Scholar 

  7. PARK H W, PARK D W. Removal kinetics for gaseous NO and SO2 by an aqueous NaClO2 solution mist in a wet electrostatic precipitator [J]. Environmental Technology Letters, 2017, 38(7): 835–843. DOI: https://doi.org/10.1080/09593330.2016.1213770.

    Article  Google Scholar 

  8. SAIYASITPANICH P, KEENER T C, LU M M, LIANG F Y, KHANG S J. Control of diesel gaseous and particulate emissions with a tube-type wet electrostatic precipitator [J]. Journal of the Air & Waste Management Association, 2008, 58(10): 1311–1317.

    Article  Google Scholar 

  9. SU L P, DU Q, WANG Y D, DONG H M, GAO J M, WANG M, DONG P. Purification characteristics of fine particulate matter treated by a self-flushing wet electrostatic precipitator equipped with a flexible electrode [J]. Journal of the Air & Waste Management Association, 2018, 68(7): 725–736. DOI: https://doi.org/10.1080/10962247.2018.1460635.

    Article  Google Scholar 

  10. YANG Z D, ZHENG C H, ZHANG X F, CHANG Q Y, WENG W G, WANG Y, GAO X. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator [J]. RSC Advances, 2018, 8(1): 59–66.

    Article  Google Scholar 

  11. CAO R J, TAN H Z, XIONG Y Y, MIKULCIC H, VUJANOVIC M, WANG X B, DUIĆ N. Improving the removal of particles and trace elements from coal-fired power plants by combining a wet phase transition agglomerator with wet electrostatic precipitator [J]. Journal of Cleaner Production, 2017, 161: 1459–1465. DOI: https://doi.org/10.1039/C7RA11520B

    Article  Google Scholar 

  12. SAIYASITPANICH P, KEENER T C, LU M M, KHANG S J, EVANS D E. Collection of ultrafine diesel particulate matter (DPM) in cylindrical single-stage wet electrostatic precipitators [J]. Environmental Science & Technology, 2006, 40(24): 7890–7894. DOI: https://doi.org/10.1021/es060887k.

    Article  Google Scholar 

  13. CHANG J, DONG Y, YAN J, LI B, MA C Y. Performance test of a new wet ESP with flexible collection Electrodes [C]// International Conference on Bioinformatics & Biomedical Engineering. IEEE, 2010. DOI: https://doi.org/10.1109/ICBBE.2010.5516443.

  14. CHEN T M, TSAI C J, YAN S Y, LI S N. An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles [J]. Separation & Purification Technology, 2014, 136: 27–35. DOI: https://doi.org/10.1016/j.seppur.2014.08.032.

    Article  Google Scholar 

  15. YANG Z D, ZHENG C H, LIU S J, GUO Y S, LIANG C S, WANG Y, HU D Q, GAO X. A combined wet electrostatic precipitator for efficiently eliminating fine particle penetration [J]. Fuel Processing Technology, 2018, 180: 122–129. DOI: https://doi.org/10.1016/j.fuproc.2018.08.013.

    Article  Google Scholar 

  16. YANG Z D, ZHENG C H, ZHANG X F, ZHOU H, SILVA A A, LIU C Y, SNYDER B, WANG Y, GAO X. Challenge of SO3 removal by wet electrostatic precipitator under simulated flue gas with high SO3 concentration [J]. Fuel, 2018, 217: 597–604. DOI: https://doi.org/10.1016/j.fuel.2017.12.125.

    Article  Google Scholar 

  17. QIU Z Z, LI P, PAN W G, REN J X, WANG W H, WU J, ZHU Q Z. Modeling of the velocity profile and experimental study on velocity uniformity in the electrostatic precipitator [C]// International Conference on Power Engineering. Hangzhou, 2007. DOI: https://doi.org/10.1007/978-3-540-76694-0_85.

    Chapter  Google Scholar 

  18. HAQUE S M E, RASUL M G, KHAN M M K, DEEV A V, SUBASCHANDAR N. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator [J]. Experimental Thermal and Fluid Science, 2009, 33(2): 322–328. DOI: https://doi.org/10.1016/j.expthermflusci.2008.09.010.

    Article  Google Scholar 

  19. TU G, SONG Q, YAO Q. Experimental and numerical study of particle deposition on perforated plates in a hybrid electrostatic filter precipitator [J]. Powder Technology, 2017, 321: 143–153. DOI: https://doi.org/10.1016/j.powtec.2017.08.021.

    Article  Google Scholar 

  20. YE X L, SU Y B, GUO B Y, YU A B. Multi-scale simulation of the gas flow through electrostatic precipitators [J]. Applied Mathematical Modelling, 2016, 40(21, 22): 9514–9526. DOI: https://doi.org/10.1016/j.apm.2016.06.023.

    Article  Google Scholar 

  21. GUO B Y, YANG S Y, XING M, DONG K J, YU A B, GUO J. Toward the development of an integrated multiscale model for electrostatic precipitation [J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11282–11293. DOI: https://doi.org/10.1021/ie303466g.

    Article  Google Scholar 

  22. GUO B Y, HOU Q F, YU A B, LI L F, GUO J. Numerical modelling of the gas flow through perforated plates [J]. Chemical Engineering Research & Design, 2013, 91(3): 403–408. DOI: https://doi.org/10.1016/j.cherd.2012.10.004.

    Article  Google Scholar 

  23. LUO K, LI Y, ZHENG C H, GAO X, FAN J R. Numerical simulation of temperature effect on particles behavior via electrostatic precipitators [J]. Applied Thermal Engineering, 2015, 88: 127–139. DOI: https://doi.org/10.1016/j.applthermaleng.2014.11.078.

    Article  Google Scholar 

  24. YANG K, LI Q, DING Z J, XIAO L C. CFD-based simulation study on producer gas explosion in an electrostatic precipitation [J]. Process Safety Progress, 2016, 35(1): 96–102. DOI: https://doi.org/10.1002/prs.11743.

    Article  Google Scholar 

  25. GAO F D, WANG D X, WANG H D. Numerical analysis and verification of the gas jet from aircraft engines impacting a jet blast deflector [J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 86. DOI: CNKI:SUN:YJXB.0.2018-05-013.

    Article  Google Scholar 

  26. LEE S D. Impacts of surrounding building layers in CFD wind simulations [J]. Energy Procedia, 2017, 122: 50–55. DOI: https://doi.org/10.1016/j.egypro.2017.07.313.

    Article  Google Scholar 

  27. CHOI B S, FLETCHER C A J. Computation of particle transport in an electrostatic precipitator [J]. Journal of Electrostatics, 1997, 40–41: 413–418. DOI: https://doi.org/10.1016/s0304-3886(97)00080-6.

    Article  Google Scholar 

  28. SKODRAS G, KALDIS S P, SOFIALIDIS D, FALTIS O, GRAMMELIS P, SAKELLAROPOULOS G P. Particulate removal via electrostatic precipitators-CFD simulation [J]. Fuel Processing Technology, 2006, 87(7): 623–631.

    Article  Google Scholar 

  29. TU J H, YUAN W F, ZHU P J. Computation of flow field distribution in electrostatic precipitator equal resistance simulation [J]. Journal of Environmental Engineering, 2004, 28: 37–39.

    Google Scholar 

  30. SAHIN B. Pressure losses in an isolated perforated plate and jets emerging from the perforated plate [J]. International Journal of Mechanical Sciences, 1989, 31: 51–61. DOI: https://doi.org/10.1016/0020-7403(89)90118-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Zhang  (张浩) or Xi-zhong An  (安希忠).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Xl., Wang, S., Zhang, H. et al. Process simulation and optimization of flow field in wet electrostatic precipitator. J. Cent. South Univ. 27, 132–143 (2020). https://doi.org/10.1007/s11771-020-4283-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4283-4

Key words

关键词

Navigation