Skip to main content
Log in

A new hybrid energy absorption mechanism subjected to axial loading

一种新型的轴向载荷作用下的混合吸能机制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study aims to introduce a novel hybrid design with a combination of two more common mechanisms for improving the capacity of systems in absorbing the kinetic energy of moving vehicles or devices. This new model consists of two individual mechanisms, i.e., expansion of a circular tube accompanied by crushing of an inner tube, which dissipate the energy through friction, plastic deformations and failures of inner tube. This study comprises 24 case studies surveyed under two different design controls, constant mass and constant volume, for comparing purposes. Finite element simulations are utilized so as to investigate models’ deformations and to extract some crashworthiness parameters in aid of representing the efficiency of the mechanism as well as conducting a parametric study between three different profiles of inner tube. This study shows that models with inner circular and hexagonal tube profile absorb higher amount of energy due to experiencing three different modes of energy dissipation systems, including folding, shear and ductile damages.

摘要

本研究结合两种常见的机制以提高系统吸收移动车辆或设备动能的能力. 该模型由两个独立的机制组成, 即圆管的膨胀和内胎的破碎, 通过内胎的摩擦、塑性变形和失效来耗散能量. 本研究调查 24 个在恒质量和恒体积两种不同设计控制下的案例以进行比较, 利用有限元模拟方法研究了模型的变形, 提取了耐撞性参数, 以反映机制的效率, 并对三种不同的内胎外形进行了参数化研究. 研究表明, 内环型和六角形管型模型由于经历了折叠、剪切和延性损伤三种不同的能量耗散系统, 吸收了更多的能量.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F x :

Axial crushing load

F tot :

Total absorbed energy

b :

Width of aluminum rectangular tube

d :

Diameter of aluminum circular tube

M :

Mass of the tubes

V i :

Internal volume of tubes

c :

Side of aluminum hexagonal tube

l :

Length of tubes

CM:

Constant mass design

CV:

Constant volume design

ECT:

Expansion of circular tubes

ACT:

Axial crushing tubes

CMS:

Sample with circular inner tube and constant mass design

HMS:

Sample with hexagonal inner tube and constant mass design

RVS:

Sample with rectangular inner tube and constant volume design

CVS:

Sample with circular inner tube and constant volume design

HVS:

Sample with hexagonal inner tube and constant volume design

RMS:

Sample with rectangular inner tube and constant mass design

SAEM:

Specific absorbed energy under constant mass

SAEV:

Specific absorbed energy under constant volume

References

  1. ALMEIDA B P P, ALVES M L, ROSA P A R, BRITO A G, MARTINS P A F. Expansion and reduction of thin-walled tubes using a die: Experimental and theoretical investigation [J]. International Journal of Machine Tools and Manufacture, 2006, 46(12): 1643–1652.

    Article  Google Scholar 

  2. SEIBI A C, BARSOUM I, MOLKI A. Experimental and numerical study of expanded aluminum and steel tubes [J]. Procedia Engineering, 2011, 10: 3049–3055.

    Article  Google Scholar 

  3. SHAKERI M, SALEHGHAFFARI S, MIRZAEIFAR R. Expansion of circular tubes by rigid tubes as impact energy absorbers: Experimental and theoretical investigation [J]. International Journal of Crashworthiness, 2007, 12(5): 493–501.

    Article  Google Scholar 

  4. JAKIRAHEMED M D, DAVIDSON M J, VENKATESWARLU G, VENUGOPAL L. A study on effect of process parameters on the expansion of thin walled aluminium 7075 tubes [J]. International Journal of Advanced Science and Technology, 2011, 36(11): 83–93.

    Google Scholar 

  5. KOHAR C P, MOHAMMADI M, MISHRA R K. INAL K. Effects of elastic-plastic behaviour on the axial crush response of square tubes [J]. Thin-Walled Structures, 2015, 93: 64–87.

    Google Scholar 

  6. SALEHGHAFFARI S, TAJDARI M, PANAHI M, MOKHTARNEZHAD F. Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading [J]. Thin-Walled Structures, 2010, 48(6): 379–390.

    Article  Google Scholar 

  7. SINGH A, PANDA S K. Parametric study on quasi-static crushing behaviour of flanged tubes under axial loading [J]. Materials Today: Proceedings, 2017, 4(2, Part A): 863–871.

    Google Scholar 

  8. YANG Z, YAN H, HUANG C, DIAO X, WU X, WANG S, LU L, LIAO L, WEI Y. Experimental and numerical study of circular, stainless thin tube energy absorber under axial impact by a control rod [J]. Thin-Walled Structures, 2014, 82: 24–32.

    Article  Google Scholar 

  9. ZHANG X, LENG K, ZHANG H. Axial crushing of embedded multi-cell tubes [J]. International Journal of Mechanical Sciences, 2017, 131–132: 459–470.

    Article  Google Scholar 

  10. ZHANG X, ZHANG H, REN W. Axial crushing of tubes fabricated by metal sheet bending [J]. Thin-Walled Structures, 2018, 122: 252–263.

    Article  Google Scholar 

  11. XIE S, YANG W, WANG N, LI H. Crashworthiness analysis of multi-cell square tubes under axial loads [J]. International Journal of Mechanical Sciences, 2017, 121: 106–118.

    Article  Google Scholar 

  12. XIE S, YANG W, LI H, WANG N. Impact characteristics and crashworthiness of multi-cell, square, thin-walled, structures under axial loads [J]. International Journal of Crashworthiness, 2017, 22(5): 503–517.

    Article  Google Scholar 

  13. QIU N, GAO Y, FANG J, FENG Z, SUN G, LI Q. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases [J]. Finite Elements in Analysis and Design, 2015, 104: 89–101.

    Article  Google Scholar 

  14. SHARIFI S, SHAKERI M, FAKHARI H E, BODAGHI M. Experimental investigation of bitubal circular energy absorbers under quasi-static axial load [J]. Thin-Walled Structures, 2015, 89: 42–53.

    Article  Google Scholar 

  15. PAYGOZAR B, SAEIMI SADIGH M A. Improved energy absorption mechanism: Expansion of circular tubes by rigid tubes during the axial crushing [J]. Journal of Failure Analysis and Prevention, 2018, 18(1): 174–182.

    Article  Google Scholar 

  16. LI J, GAO G, DONG H, XIE S, GUAN W. Study on the energy absorption of the expanding-splitting circular tube by experimental investigations and numerical simulations [J]. Thin-Walled Structures, 2016, 103: 105–114.

    Article  Google Scholar 

  17. AZARAKHSH S, RAHI A, GHAMARIAN A, MOTAMEDI H. Axial crushing analysis of empty and foam-filled brass bitubular cylinder tubes [J]. Thin-Walled Structures, 2015, 95: 60–72.

    Article  Google Scholar 

  18. LIU W, HUANG J, DENG X, LIN Z, ZHANG L. Crashworthiness analysis of cylindrical tubes filled with conventional and negative Poisson’s ratio foams [J]. Thin-Walled Structures, 2018, 131: 297–308.

    Article  Google Scholar 

  19. WANG Y, ZHAI X, YAN J, YING W, WANG W. Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading [J]. Thin-Walled Structures, 2018, 131: 566–576.

    Article  Google Scholar 

  20. YAN J, YAO S, XU P, PENG Y, SHAO H, ZHAO S. Theoretical prediction and numerical studies of expanding circular tubes as energy absorbers [J]. International Journal of Mechanical Sciences, 2016, 105: 206–214.

    Article  Google Scholar 

  21. HOOPUTRA H, GESE H, DELL H, WERNER H. A comprehensive failure model for crashworthiness simulation of aluminium extrusions [J]. International Journal of Crashworthiness, 2004, 9(5): 449–463.

    Article  Google Scholar 

  22. KOLMOGOROV W L. Spannungen deformationen bruch [M]. Metallurgija, 1970: 230–235.

  23. HANSSEN A G, LANGSETH M, HOPPERSTAD O. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(4): 347–383.

    Article  Google Scholar 

  24. HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507.

    Article  Google Scholar 

  25. ZAHRAN M S, XUE P, ESA M S, ABDELWAHAB M M. A novel tailor-made technique for enhancing the crashworthiness by multi-stage tubular square tubes [J]. Thin-Walled Structures, 2018, 122: 64–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paygozar Bahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahman, P., Mohammad Ali, S.S. A new hybrid energy absorption mechanism subjected to axial loading. J. Cent. South Univ. 27, 76–87 (2020). https://doi.org/10.1007/s11771-020-4279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4279-0

Key words

关键词

Navigation