Skip to main content
Log in

Experimental investigation on boiling heat transfer and pressure drop of R245fa in a horizontal micro-fin tube

水平微肋管内R245fa 沸腾换热及压降的实验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed. The results show that in terms of flow boiling heat transfer characteristics, boiling heat transfer coefficient (HTC) increases with mass velocity of R245fa, while it decreases with the increment of saturation temperature and heat flux. With the increase of vapor quality, HTC has a maximum and the corresponding vapor quality is about 0.4, which varies with the operating conditions. When vapor quality is larger than the transition point, HTC can be promoted more remarkably at higher mass velocity or lower saturation temperature. Among the four selected correlations, KANDLIKAR correlation matches with 91.6% of experimental data within the deviation range of ±25%, and the absolute mean deviation is 11.2%. Also, in terms of frictional pressure drop characteristics of flow boiling, the results of this study show that frictional pressure drop increases with mass velocity and heat flux of R245fa, while it decreases with the increment of saturation temperature. MULLER-STEINHAGEN-HECK correlation shows the best prediction accuracy for frictional pressure drop among the four widely used correlations. It covers 84.1% of experimental data within the deviation range of ±20%, and the absolute mean deviation is 10.1%.

摘要

本文对R245fa 在7 mm 水平微肋管内的沸腾传热特性和摩擦压降特性进行了实验研究. 结果表 明, 在流动沸腾传热特性方面, 沸腾传热系数(HTC)随着R245fa 质量速度的增加而增大, 随着饱和温 度和热流密度的增加而减小. 随着干度的增加, HTC 存在最大值, 对应的干度约为0.4, 其值随工作 条件的变化而变化. 当干度大于过渡点时, 较高的质量速度或较低的饱和温度下可以显著增加HTC. 在所选四个关联式中, KANDLIKAR 的预测值与91.6%实验值的偏差在±25%以内, 绝对平均误差为 11.2%. 此外, 关于流动沸腾的摩擦压降特性, 本研究结果表明, 摩擦压降随着R245fa 的质量速度和 热流密度的增加而增加, 随着饱和温度的升高而减小. 在四种常用的关联式中, MULLER-STEINHAGEN-HECK 对R245fa摩擦压降值的预测最准确, 预测值与84.1%的实验值偏差在±20%以内, 绝对平均误差为10.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TCHANAHE B F, LAMNRINOS G, FRANGOUDAKIS A. Low-grade heat conversion into power using organic Rankine cycles-a review of various applications [J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3963–3979. DOI:https://doi.org/10.1016/j.rser.2011.07.024.

    Article  Google Scholar 

  2. WANG Zhi-qi, ZHOU Nai-jun, GUO jing. Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat [J]. Energy, 2012, 40(1): 107–115. DOI: https://doi.org/10.1016/j.energy.2012.02.022.

    Article  Google Scholar 

  3. XIA Xiao-xia, WANG Zhi-qi, HU Yan-hua, ZHOU Nai-jun. A novel comprehensive evaluation methodology of organic Rankine cycle for parameters design and working fluid selection [J]. Applied Thermal Engineering, 2018, 143: 283–292. DOI:https://doi.org/10.1016/j.applthermaleng.2018.07.061.

    Article  Google Scholar 

  4. SUN Wen-qiang, YUE Xiao-yu, WANG Yan-hui, CAI Jiu-ju. Energy and exergy recovery from exhaust hot water using organic Rankine cycle and a retrofitted configuration [J]. Journal of Central South University, 2018, 25: 1464–1474. DOI: https://doi.org/10.1007/s11771-018-3840-6.

    Article  Google Scholar 

  5. YANG Fu-bin, ZHANG Hong-guang, SONG Song-song, BEI Chen, WANG Hong-jin, WANG En-hua. Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine [J]. Energy, 2015, 93(2): 2208–2228. DOI: https://doi.org/10.1016/j.energy.2015.10.117.

    Article  Google Scholar 

  6. KANG S H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid [J]. Energy, 2012, 41(1): 514–524. DOI: https://doi.org/10.1016/j.energy.2012.02.035.

    Article  Google Scholar 

  7. SAFARIAN S, ARAMOUN F. Energy and exergy assessments of modified organic rankine cycles (ORCs) [J]. Eenrgy Report, 2015, 1: 1–17. DOI: https://doi.org/10.1016/j.egyr.2014.10.003.

    Article  Google Scholar 

  8. TIBIRICA C B, RIBATSKI G. Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube [J]. International Journal of Heat and Mass Transfer, 2010, 53(11): 2459–2468. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.038.

    Article  Google Scholar 

  9. LIU Z, WINTERTON R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation [J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2759–2766. DOI: https://doi.org/10.1016/0017-9310(91)90234-6.

    Article  Google Scholar 

  10. CHAMAY R, BONJOUR J, REVELLIN R. Experimental investigation of R245fa flow boiling in minichannels at high saturation temperatures: Flow patterns and flow pattern maps [J]. International Journal of Heat and Fluid Flow, 2014, 46(4): 1–16. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2013.12.002.

    Google Scholar 

  11. GUNGOR K E, WINTERTON R H S. Simplified general correlation for saturated flow boiling and comparisons with data [J]. Chemical Engineering Research and Design, 1987, 65(2): 148–156.

    Google Scholar 

  12. PIKE-WILSON E A, KARAYANNIS T G. Flow boiling of R245fa in 1.1 mm diameter stainless steel, brass and copper tube [J]. Experimental Thermal and Fluid Science, 2014, 59: 166–183. DOI:https://doi.org/10.1016/j.expthermflusci.2014.02.024.

    Article  Google Scholar 

  13. REVELLIN R, THOME J R. Experimental investigation of R134a and R245fa two-phase flow in microchannels for different flow conditions [J]. International Journal of Heat and Fluid Flow, 2007, 28(1): 63–71. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2006.05.009.

    Article  Google Scholar 

  14. MULLER-STEINHAGEN H, HECK K. A simple friction pressure drop correlation for two-phase flow in pipes [J]. Chemical Engineering and Processing Process Intensification, 1986, 20(6): 297–308. DOI: https://doi.org/10.1016/0255-2701(86)80008-3.

    Article  Google Scholar 

  15. SANDLER S, ZAJACZKOWSKI B, KROLICKI Z. Review on flow boiling of refrigerants R236fa and R245fa in mini and micro channels [J]. International Journal of Heat and Mass Transfer, 2018, 126: 591–617. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.048.

    Article  Google Scholar 

  16. SAITOH S, DAIGUJI H, HIHARA E. Correlation for boiling heat transfer of R134a in horizontal tubes including effect of tube diameter [J]. International Journal of Heat and Mass Transfer, 2007, 50(25): 5215–5225. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.019.

    Article  MATH  Google Scholar 

  17. LONGO G A, MANCIN S, RIGHETTI G, ZILIO C. R245fa flow boiling inside a 4.2 mm ID microfin tube [J]. International Journal of Physics: Conference Series, 2011(1): 012016. DOI: https://doi.org/10.1016/j.ijrefrig.2014.07.018.

    Article  Google Scholar 

  18. DIANI A, MANCIN S, ROSSETTO L. R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube [J]. International Journal of Refrigeration, 2014, 47: 105–119. DOI: https://doi.org/10.1016/j.ijrefrig.2014.07.018.

    Article  Google Scholar 

  19. LALLEM M, BRANESCU C, HABERSCHILL P. Local heat transfer coefficients during boiling of R22 and R407C in horizontal smooth and micro-fin tubes [J]. International Journal of Refrigeration, 2001, 24(1): 57–72. DOI: https://doi.org/10.1016/S0140-7007(00)00064-5.

    Article  Google Scholar 

  20. WU Xiao-min, ZHU Yu, TANG Ying-jie. New experimental data of CO2 flow boilingin mini tube with micro fins of zero helix angle [J]. International Journal of Refrigeration, 2015, 59: 281–294. DOI: https://doi.org/10.1016/j.ijrefrig.2015.08.002.

    Article  Google Scholar 

  21. CUI Wen-zhi, LI Long-jian, XIN Ming-dao, JEN T C. A heat transfer correlation of flow boiling in micro-finned helically coiled tube [J]. International Journal of Heat and Mass Transfer, 2006, 49(17): 2851–2858. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.020.

    Article  Google Scholar 

  22. JIANG Guo-bao, TAN Jin-tian, NIAN Qu-xing, TAO Wu-qing. Experimental study of boiling heat transfer in smooth/micro-fin tubes of four refrigerants [J]. International Journal of Heat and Mass Transfer, 2016, 98(7): 631–642. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.024.

    Article  Google Scholar 

  23. HAN Xiao-hong, LI Peng, YUAN Xiao-rong, WANG Qin, CHEN Guang-ming. The boiling heat transfer characteristics of the mixture HFO-1234yf/oil inside a micro-fin tube [J]. International Journal of Heat and Mass Transfer, 2013, 67(12): 1122–1130. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.083.

    Article  Google Scholar 

  24. ZHANG Xiao-yan, ZHANG Jin, JI Hai-wei, ZHAO Deng-yu. Heat transfer enhancement and pressure drop performance for R417A flow boiling in internally grooved tubes [J]. Energy, 2015, 86(15): 446–454. DOI: https://doi.org/10.1016/j.energy.2015.04.054.

    Article  Google Scholar 

  25. PADOVAN A, DSLCO D, ROSSETTO L. Experimental study on flow boiling of R134a and R410A in a horizontal microfin tube at high saturation temperatures [J]. Applied Thermal Engineering, 2011, 31(17): 3814–3826. DOI: https://doi.org/10.1016/j.applthermaleng.2011.07.026.

    Article  Google Scholar 

  26. CAVALLINI A, DEL COL D, ROSSETTO L. Flow boiling inside microfin tubes: Prediction of the heat transfer coefficient [C]// Proceedings of ECI International Conference on Boiling Heat Transfer. Spoleto, Italy, 2006.

  27. AKHAVAN BEHABADIM A, MOHSENI S G, RAZAVINASAB S M. Evaporation heat transfer of R-134a inside a micro-fin tube with different tube inclinations [J]. Experimental Thermal and Fluid Science, 2011, 35(6): 996–1001. DOI: https://doi.org/10.1016/j.expthermflusci.2011.01.020.

    Article  Google Scholar 

  28. CHIOU Chen-bao, LU Deng-chao, CHEN Ceng-cong. Heat transfer correlations of forced convective boiling for pure refrigerants in micro-fin tubes [J]. Applied Thermal Engineering, 2011, 31(5): 820–826. DOI: https://doi.org/10.1016/j.applthermaleng.2010.10.031.

    Article  Google Scholar 

  29. COLOMBO L P M, LUCCHINI A, MUZZIO A. Flow patterns, heat transfer and pressure drop for evaporation and condensation of R134A in microfin tubes [J]. International Journal of Refrigeration, 2012, 35(8): 2150–2165. DOI: https://doi.org/10.1016/j.ijrefrig.2012.08.019.

    Article  Google Scholar 

  30. TANG Wei-yu, LI Wei. A new heat transfer model for flow boiling of refrigerants in micro-fin tubes [J]. International Journal of Heat and Mass Transfer, 2018, 126: 1067–1078. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.066.

    Article  Google Scholar 

  31. ROUHANI Z, AXEISSON E. Calculation of void volume fraction in the subcooled and quality boiling regions [J]. International Jouranal of Heat Mass Transfer, 1970, 13(2): 383–393. DOI: https://doi.org/10.1016/0017-9310(70)90114-6.

    Article  Google Scholar 

  32. MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Fluid Thermal Science, 1998, 1(1): 3–17. DOI: https://doi.org/10.1016/0894-1777(88)90043-x.

    Article  Google Scholar 

  33. KANDLIKAR S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes [J]. Journal of Heat Transfer, 1990, 112(1): 219–228. DOI: https://doi.org/10.1115/1.2910348.

    Article  Google Scholar 

  34. LOCKHART R W, MARTINELLI R C. Proposed correlation of data for isothermal two-phase two-component flow in pipes [J]. Chem Eng Prog, 1949, 45(1): 39–45.

    Google Scholar 

  35. CHISHOLM D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow [J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767–1778. DOI: https://doi.org/10.1016/0017-9310(67)90047-6.

    Article  Google Scholar 

  36. FFIEDEL L. Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow [J]. Proc of European Two-phase Flow Group Meet. Ispra, Italy, 1979.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-qi Wang  (王志奇).

Additional information

Foundation item: Project(51606162) supported by the National Natural Science Foundation of China; Project(2018JJ2399) supported by the Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zq., He, N., Xia, Xx. et al. Experimental investigation on boiling heat transfer and pressure drop of R245fa in a horizontal micro-fin tube. J. Cent. South Univ. 26, 3200–3212 (2019). https://doi.org/10.1007/s11771-019-4246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4246-9

Key words

关键词

Navigation